
SafeFS: A Modular Architecture for
Secure User-Space File Systems

(One FUSE to rule them all)

Rogério Pontes**, Dorian Burihabwa*, Francisco Maia**, João Paulo**, Valerio Schiavoni*,
Pascal Felber*, Hugues Mercier*, and Rui Oliveira**

*University of Neuchatel, Switzerland
**INESC TEC & University of Minho, Portugal

ABSTRACT
The exponential growth of data produced, the ever faster
and ubiquitous connectivity, and the collaborative process-
ing tools lead to a clear shift of data stores from local
servers to the cloud. This migration occurring across dif-
ferent application domains and types of users—individual
or corporate—raises two immediate challenges. First, out-
sourcing data introduces security risks, hence protection
mechanisms must be put in place to provide guarantees such
as privacy, confidentiality and integrity. Second, there is no
“one-size-fits-all” solution that would provide the right level
of safety or performance for all applications and users, and
it is therefore necessary to provide mechanisms that can be
tailored to the various deployment scenarios.

In this paper, we address both challenges by introducing
SafeFS, a modular architecture based on software-defined
storage principles featuring stackable building blocks that
can be combined to construct a secure distributed file sys-
tem. SafeFS allows users to specialize their data store to
their specific needs by choosing the combination of blocks
that provide the best safety and performance tradeoffs. The
file system is implemented in user space using FUSE and can
access remote data stores. The provided building blocks no-
tably include mechanisms based on encryption, replication,
and coding. We implemented SafeFS and performed in-
depth evaluation across a range of workloads. Results reveal
that while each layer has a cost, one can build safe yet effi-
cient storage architectures. Furthermore, the different com-
binations of blocks sometimes yield surprising tradeoffs.

CCS Concepts
•Information systems → Hierarchical storage man-
agement; Cloud based storage; •Hardware → Exter-
nal storage; •Security and privacy → Management and
querying of encrypted data;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SYSTOR ’17 May 22–24, 2017, Haifa, Israel
c© 2017 ACM. ISBN 978-1-4503-5035-8/17/05. . . $15.00

DOI: http://dx.doi.org/10.1145/3078468.3078480

General Terms
Design, Security, Standardization, Experimentation

Keywords
Software Defined Storage, Privacy at Rest, Data Confiden-
tiality, FUSE

1. INTRODUCTION
We are living in the era of digital information, where un-

interrupted and almost instantaneous access to worldwide
data is expected. Generated data is growing at an un-
precedented rate and latest projections predict a total of
44 zettabytes by 2020, a 10× increase from 2013 [44].

This overwhelming amount of data is quickly migrating
from private computers and servers to third-party cloud
providers (e.g., Dropbox or Google Drive) to leverage large
and scalable infrastructures. This paradigm shift raises two
important challenges. First, client applications need to han-
dle heterogeneous and incompatible interfaces. Second, stor-
ing data on remote sites implies losing control over it, a seri-
ous matter for applications that deal with sensitive data [41].

The first problem can be partially solved by providing
well-known and extensively used abstractions on top of
third-party interfaces. One of the most widespread and high-
est level abstractions offered atop storage systems is the file
system. The practicality and ease of use of such abstrac-
tion has spurred the development of a plethora of differ-
ent file system solutions offering a variety of compromises
between I/O performance optimization, availability, consis-
tency, resource consumption, security, and privacy guaran-
tees for stored data [45, 37, 50, 25]. Additionally, developers
can leverage the FUSE [9] (filesystem in user-space) frame-
work to implement a POSIX-like [48] file system on top of
a multitude of local and remote storage systems in a fairly
straightforward manner. Nevertheless, each file system im-
plementation is different and specifically designed for certain
use cases or workloads. Choosing which implementations to
use and combining them in order to take advantage of their
respective strong features is far from trivial [54].

The second problem, securely outsourcing sensitive data,
has also been the subject of intensive work. There are sev-
eral file system implementations providing privacy preserv-
ing mechanisms [50, 30, 7, 13]. However, similarly to stor-
age systems, a single approach does not address the specific
privacy needs of every application or system. Some require
higher levels of data privacy while others target performance

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3078468.3078480&domain=pdf&date_stamp=2017-05-22

at the price of lower privacy guarantees. Furthermore, these
approaches lack a clear separation between privacy preserv-
ing mechanisms and the file system implementation itself.
This prevents an easy combination of different privacy pre-
serving mechanisms with other file system properties (e.g.,
caching, compression, replication, etc).

In this paper we tackle both challenges simultaneously.
Inspired by software-defined storage (SDS) design princi-
ples [43, 23], we introduce SafeFS, a novel approach to
secure user-space stackable file systems. We advance the
state of the art in two important ways by providing two-
dimensional modularity and privacy à la carte.

First, the SafeFS two-dimensional modular design allows
easy implementations of specialized storage layers for se-
curity, replication, coding, compression and deduplication,
while at the same time allowing each layer to be individually
configurable through plug-in software drivers. SafeFS lay-
ers can then be stacked in any desired order to address differ-
ent application needs. The design of SafeFS avoids usual
pitfalls such as the need for global knowledge across lay-
ers. For instance, for size-modifying layer implementations
(e.g., encryption with padding, compression, deduplication),
SafeFS does not require a cross-layer metadata manager to
receive, process, or redirect requests across layers [51].

Second, SafeFS design allows us to easily combine any
FUSE-based file system implementation with several cryp-
tographic techniques and, at the same time, to leverage both
centralized [19, 17] and distributed storage back-ends [25,
14]. For example, it is easy to integrate an existing FUSE-
based file system with secret sharing on top of distributed
storage back-ends using SafeFS simply by adapting the sys-
tem APIs. To the best of our knowledge, SafeFS is the first
user-space file system to offer this level of flexibility.

To show the practicality and effectiveness of our approach,
we implemented a full prototype of SafeFS that, as in re-
cent proposals [24, 14, 10, 46], resorts to the FUSE frame-
work. With thorough experimental evaluation, we compare
several unique configurations of SafeFS, each combining
different privacy-preserving techniques and cryptographic
primitives. We evaluate the performance by resorting to
state-of-the-art benchmarks. SafeFS is open-source1 and
available to ease the reproducibility of our evaluation.

The remainder of this paper is organized as follows. We
present related work in Section 2. Section 3 illustrates the
design goals of SafeFS, while Section 4 details its archi-
tecture. The implementation details are given in Section 5.
Section 6 presents our extensive evaluation of the SafeFS
prototype, before concluding with the road ahead.

2. RELATED WORK
There is a large body of literature and numerous deployed

systems to which SafeFS relates to. This section presents a
survey of related file systems, both in kernel- and user-space,
with a special focus on other file systems with privacy-aware
features. We wrap up this section with related work from
the software-defined storage domain [27].

Kernel-space solutions. Stackable file systems [31] de-
couple data processing into multiple layers that follow a
common interface. As each layer is independent and iso-
lates a specific data processing stage, these file systems can
be extended with additional layers. Kernel-space stackable

1https://github.com/safecloud-project/SafeFS

file systems apply this concept by extending the classic vn-
ode interface [34]. This design is used by CryptFS and
NCryptfs [52, 50] to enhance file systems with access con-
trol, malware detection, and privacy-aware layers. NCryptfs
extends the security features presented in Cryptfs, while
both are built atop WrapFS [53], which proposed stack-
able templates to ease the development of stackable file
systems. Stackable templates have a limited API and are
bound to a single platform. These limitations were miti-
gated by FiST [54], a high-level language to define stack-
able file systems and a correspondent cross-platform com-
piler. Nevertheless, even with a high-level language ab-
straction, implementing layers with complex behavior (e.g.,
predictive caching, replication) at the kernel level is an ex-
tremely challenging task. Furthermore, when any of the
layers changes the size of the file being processed (e.g.,
compression/decompression layers, cryptographic primitives
with padding), these systems require a system-wide global
index that tracks the offsets and the size of data blocks writ-
ten at the final filesystem layer. This indexing requires a
global metadata structure to keep track of the real block
and file size, thus introducing dependencies between layers.

SafeFS relies on the FUSE API for layer stacking, which
provides a richer set of operations and avoids the aforemen-
tioned problems. Each layer is independent from its adjacent
layers while still supporting size-changing processing.

User-space solutions. It is possible to implement user-
space file systems by exploiting the FUSE software frame-
work and the corresponding kernel module. User-space so-
lutions require considerably lower implementation efforts. A
recent study [42] observed that at least 100 user-space file
systems have been published between 2003 and 2015. On
the contrary, only about 70 kernel-based systems appeared
in the last 25 years. The same report showed that porting
file systems functionalities to user-space reduced the time
required to develop new solutions and improve their main-
tainability, reliability, extensibility, and security. An obvious
advantage for user-space implementations is to have direct
access to efficient user-space software libraries

The extensive micro-workload evaluation in [42] inspired
the evaluation of SafeFS, which we present later in Sec-
tion 6. Those results show that with the recent advances
in hardware processing, storage, and RAM capabilities, the
throughput of FUSE-based file systems has improved signif-
icantly and now offers an acceptable I/O overhead. Several
applications are now adopting this approach [24, 14, 10].

The SafeFS design brings a modular architecture for
FUSE-based file systems that enables easy and almost trans-
parent combination and enrichment to the plethora of exist-
ing systems in a single yet configurable solution.

Privacy-aware file systems. Data encryption is an
increasingly desirable counter-measure to protect sensitive
information. This becomes crucial when the data is being
stored on third-party infrastructures where data is no longer
in control of its rightful owners. However, the widespread
adoption of these systems is highly dependent on the per-
formance, usability, and transparency of each approach.

As shown in Table 1, several proposals address
data encryption to tackle the aforementioned challenges.
Cryptfs [52], NCryptfs [50], StegFS [33], PPDD [16], EFS [6],
and TCFS [28] reuse the implementations (kernel-code or
the NFS kernel-mode client) of existing file systems to inte-
grate a data encryption layer. These systems support dis-

Stackable Layers Multi-Backend

Type Name Single-L Multi-L PnP-Privacy Multi-B PnP-B

Kernel

PPDD [16] × × × × ×
StegFS [33], EFS [6],

TCFS [28], BestCrypt [1],
eCryptfs [30]

× ×
√

× ×

Cryptfs [52]
√

× × × ×
NCryptfs [50]

√
×

√
× ×

dm-crypt [3]
√

×
√ √

×

User

CFS [26], LessFS [10],
MetFS [13], S3QL [18],

Bluesky [47]
× × × × ×

SCFS [25] × × ×
√

×
EncFS [7], CryFS [2] × ×

√
× ×

SafeFS
√ √ √ √ √

Table 1: Survey of related file systems. We categorize them by type (Kernel=kernel-space, User=user-space), if they are
stackable and if the stacking architecture contemplates a single-layer (Single-L) or multi-layer (Multi-L) hierarchy, if they
provide a plug & play design for easily switching between different privacy-preserving libraries (PnP-Privacy), if they can
leverage multiple storage backends (Multi-B), and if the multiple backend algorithms (data replication, load-balancing, etc)
are pluggable (PnP-B).

tinct symmetric key cryptography algorithms such as Blow-
fish [36], AES [32], and DES [38].

Similarly, dm-crypt [3] is implemented as a device-mapper
layer and uses Linux Crypto API [12] to support different
symmetric cyphers. BestCrypt [1] provides a kernel solution
to export encrypted volumes. It supports several cypher
algorithms such as AES, CAST [21], and Triple DES. The
kernel-space eCryptfs [5] further extends BestCrypt with the
support of additional cyphers (e.g., Twofish).

Another set of solutions is focused on user-space imple-
mentations. CFS [26] provides a user-level NFS server mod-
ification that uses DES+OFB to protect sensitive informa-
tion. EncFS [7], lessfs [10], MetFS [13] and CryFS [2] provide
FUSE-based file systems that cypher data with techniques
ranging AES, Blowfish, RC4, and AES-GCM.

Proposals such as S3QL [18], Bluesky [47], and SCFS [25]
focus on remote FUSE-based file systems that store data in
one or multiple third-party clouds. These systems ensure
data confidentiality with AES encryption.

As shown in Table 1, with the exception of Cryptfs,
NCryptfs and dm-crypt, all the previous solutions are mono-
lithic systems, similar to traditional distributed file system
proposals [22, 40] with additional data confidentiality fea-
tures. Many proposals only support one type of encryption
scheme, and even in the systems that allow the user to chose
among a set of schemes, it remains unclear what are the
trade-offs of using different approaches in terms of system
performance and usability.

Only a small number of these proposals provide a design
that supports the distribution of data across different stor-
age back-ends, for replication, security, or load balancing
purposes. Also, none of these proposals enable to easily
switch across the distribution algorithms (column PnP-B)
and have a stackable architecture that support stacking lay-
ers with this distribution behavior (column Multi-L). For in-
stance, it is not possible to provide a stackable design where
a replication layer replicates data across several subsequent
processing layers that encrypt data replicas with different
encryption algorithms before storing them.

In the next sections we show how SafeFS tackles all these
challenges. Moreover, we show how FUSE-based security
file systems can be integrated in a stackable solution while
at the same time comparing the performance of several cryp-
tographic schemes. Finally, we compare our approach with
several existing kernel- and user-space solutions.

The discussion presented in this section is based on the
techniques to protect sensitive information. Nevertheless, it
is important to recall that the mentioned systems also pro-
vide other security functionalities such as key management,
access control, data integrity, and even functionalities not
related with security such as compression, de-duplication,
and snapshotting. While we do not focus on such features,
the flexible design of SafeFS allows us to easy integrate
additional layers supporting them.

Software-defined storage. Our design draws inspira-
tion from recent work in software-design storage (SDS) and
network (SDN) systems. These proposals make a clear dis-
tinction between control and data stage planes. The control
plane is logically centralized, and it has a global view of the
storage infrastructure in order to dynamically manage all
data stage layers that correspond to heterogeneous storage
components. This is the case for IOFlow [43], whose goal
is to ensure a given quality of service (QoS) for requests
from virtual machines (VMs) to storage servers. A common
set of API calls is implemented by both control and data
stage layers. Through these calls, the control plane is able
to enforce static policies to a set of VMs. Notable policy
examples are for prioritizing I/O requests, defining a min-
imum bandwidth or maximum latency usage, and routing
I/O requests through specific data stage layers.

The control plane can also be used to enforce policies not
directly related to QoS metrics [23]. Notably, data stage
components can be stacked and configured in an workload-
aware fashion, thus supporting distinct storage workloads
even in a dynamic setting. Moreover, SDS proposals are
able to dispatch data requests toward multiple storage layers
or devices in a flexible and transparent way for applications
using the storage stack [39].

User Application

FUSE User-Space Library

SafeFS

Processing

FUSE

Virtual Filesystem

...

Processing

FUSE

Processing

FUSE

Processing

FUSE
Processing

FUSE

Storage

FUSE
Storage

FUSE

Privacy-Preserving
Layer

Drivers
AES DET

FUSE

FUSE Kernel ModuleKernel
Space

User
Space

Layer 0

Layer 1

Layer N-2

Layer N-1

Layer N

...

...

request reply

Figure 1: Architecture of SafeFS.

This paper focuses on the vertical data stage to provide
a flexible solution for stackable file systems. This design
enables (1) easy integration of existing file system imple-
mentations and (2) significant speedup in the development
of novel file system implementations that require a specific
set of storage optimizations. In the future, we plan to inte-
grate and extend SafeFS with the control plane design and
an extensive set of policies, similar to the OpenStack Swift
storage component [29].

3. DESIGN GOALS
SafeFS is a framework for flexible, modular and exten-

sible file system implementations built atop FUSE. Its de-
sign allows to stack independent layers, each with their own
characteristics, optimizations, etc. These layers can then
be integrated with existing FUSE-based file systems as well
as restacked in different order. Each stacking configuration
leads to file systems with different traits, suitable to differ-
ent applications and workloads. Keeping this in mind, the
four pillars of our design are:
• Effectiveness. SafeFS aims to reduce the cost of

implementing new file systems by focusing on self-
contained, stackable, and reusable file system layers.
• Compatibility. SafeFS allows us to integrate and em-

bed existing FUSE-based file systems as individual
layers.
• Flexibility. SafeFS can be configured to fit the stack

of layers to the applications requirements.
• User-friendliness. From a client application perspec-

tive, SafeFS is transparent and usable as any other
FUSE file system.

4. ARCHITECTURE
Figure 1 depicts the architecture of SafeFS. The system

exposes a POSIX-compliant file system interface to the client
applications. Similar to other FUSE systems, all file system
related operations (e.g., open, read, write, seek, flush,
close, mkdir, etc.) are intercepted by the Linux FUSE
kernel module and forwarded to SafeFS by the FUSE user-
space library. Each operation is then processed by a stack
of layers, each with a specific task. The combined result of
these tasks represents a file system implementation.

We identify two types of SafeFS layers serving different
purposes. Upon receiving a request, processing layers ma-
nipulate or transform file data and/or metadata and forward
the request to the next layers. Conversely, storage layers
persist file data and metadata in designated storage back-
ends, such as local disks, network storage, or cloud-based
storage services. All layers expose an interface identical to
the one provided by the FUSE library API, which allows
them to be stacked in any order. Requests are then orderly
passed through all the layers such that each layer only re-
ceives requests from the layer immediately on top of it and
only issues requests to the layer immediately below. Lay-
ers in the bottom level must be of storage type, in order to
provide a functional and persistent file system.

This stacking flexibility is key to efficiently reuse layer im-
plementations and adapt to different workloads. For exam-
ple, using compression before replicating data across several
storage back-ends may be acceptable for archival-like work-
loads. In such settings, decompressing data before reading it
does not represent a performance impairment. On the other
hand, for high-throughput workloads it is more convenient
to only apply compression on a subset of the replicated back-
ends. This subset will ensure that data is stored in a space-
efficient fashion and is replicated to tolerate catastrophic
failures, while the other subset will ensure that stored data is
uncompressed and readily available. In these scenarios, one
storage stack would use a compression layer before a replica-
tion layer, while a second storage stack would put the com-
pression layer after the replication and only for a subset of
storage backends. Layers must be stacked wisely and not all
combinations are efficient. An obviously bad design choice
would be to stack a randomized privacy layer (e.g., stan-
dard AES cypher) before a compression layer (e.g., gzip):
by doing so, the efficiency of the compression layer would
be highly affected since information produced by the above
layer (the randomized encryption) should be indistinguish-
able from random content. While such malformed scenarios
can indeed happen, we believe that with great power comes
great responsibility and operators who deploy the system
need to take care of the appropriate layer ordering.

Finally, the SafeFS architecture allows us to embed dis-
tributed layers as intermediate layers. This is depicted in
Figure 1, where layer N − 2 (e.g., a replication layer) stores
data into two different sub-layers N − 1. SafeFS supports
redirection of operations toward multiple layers, while at the
same time maintaining these layers agnostic from the layer
above that transmits the requests.

4.1 A day in the life of a write
To illustrate the I/O flow inside a SafeFS stack, we con-

sider a write operation issued by the client application to
the virtual file system (read operations are handled simi-
larly). Each request made to the virtual filesystem is han-
dled by the FUSE kernel module (Figure 2-Ê) that imme-
diately forwards is to the user-space library (Figure 2-Ë).
At this point the request reaches the topmost layer of the
stack (Figure 2-Ì), called Layer 0. After processing the re-
quest according to its specific implementation, each layer
issues a write operation to the following layer. For example,
a privacy-preserving layer responsible for ciphering data will
take the input data, cipher it according to its configuration,
and emit a new write operation with the encrypted data
to the underlying layer. This process is repeated, according

User Application

Fuse User-Space Library

 SafeFS

Processing
FUSE API

Virtual Filesystem

Fuse Kernel ModuleKernel
Space

User
Space

Storage
FUSE API

Storage
FUSE API

➑

➋ ➐

➏

➎
➍

➌

➎

request reply

➊

➍

Figure 2: Execution flow of a write request.

to each layer implementation, until the operation reaches
a storage layer, where the data is persisted into a storage
medium (Figure 2-Í). The reply request stating whether
the operation was successfully executed or not takes the re-
verse path and is propagated first to Layer 0 (Figure 2-Î),
and eventually backward up to the application (Figure 2-Ñ).

When using distributed layers (e.g., with replication),
write operations are issued to multiple sublayers or stor-
age back-ends. These distributed layers can break some of
the assumptions made by the applications. For instance,
rename and sync operations must be atomic. To ensure cor-
rect semantics of the operations, a distributed layer should
contain a synchronization mechanisms that ensure that an
operation is only committed if successful in every backend.
Otherwise, the operation fails and the file state must not be
changed. A possible solution would be a block cache that
stores blocks before any operation is applied.

We have discussed so far how layers modify data from read
and write operations. The behavior for layers that modify
the attributes and permissions of files and folders is sim-
ilar. For instance, a layer providing access control to files
shared among several users will add this behavior to the spe-
cific FUSE calls that read and modify the files. This design
paves the way for layer reuse and for interesting stacking
configurations. Individual layers do not need to implement
the totality of the FUSE API: if a layer only needs to ma-
nipulate files, it only needs to wrap the FUSE operations
that operate over files. FUSE operations over folders can be
ignored and passed directly to the next layer without any ad-
ditional processing. Layers can support the full FUSE API
or a restricted subset, and this allows for a highly focused
layer development cycle.

4.2 Layer integration
Besides the standard FUSE API, each SafeFS layer im-

plements two more functions. First, the init function initial-
izes metadata, loads configurations, and specifies the follow-
ing layer(s) in the specific SafeFS stack. Second, the clean
function frees the resources possibly allocated by the layer.

The integration of existing FUSE-based implementations
in the form of a SafeFS layer is straightforward. Once the
init and clean are implemented, a developer simply needs
to link its code against the SafeFS library instead of the
default FUSE. Additionally, for a layer to be stacked, del-
egation calls are required to forward requests to the layers
below or above. The order in which layers are stacked is

flexible and is declared via a configuration file.
Finally, SafeFS supports layers that modify the size of

data being processed (e.g., compression, padded encryption)
without requiring any global index or cross-layer metadata.
This is an advantage over previous work [50], further dis-
cussed with concrete examples in Section 5.

4.3 Driver mechanism
Some of the privacy-preserving layers must be configured

with respect to the specific performance and security re-
quirements of the application. However, these configurations
do not change the execution flow of the messages. From an
architectural perspective, using a DES cipher or an AES
cipher is strictly equivalent.

With this observation in mind, we further improved the
SafeFS modularity by introducing the notion of driver.
Each layer can load a number of drivers by respecting a
minimal SafeFS driver API. Such API may change accord-
ing to the layer specialization and characteristics, as further
discussed in the next section. Drivers are loaded according
to a configuration file at file system’s mount time. Moreover,
it is possible to change a driver without recompiling the file
system, to re-implement layers, or to load new layers. Nat-
urally, this is possible provided that the new configuration
does not break compatibility with the previous one. For in-
stance, introducing different cryptographic techniques will
prevent the file system from reading previous data.

Consider the architecture depicted in Figure 1, with a
privacy-preserving layer having two drivers, one for symmet-
ric encryption via AES and another for asymmetric encryp-
tion with RSA. The driver API of the layer consists of two
basic operations: encode and decode. In this scenario, the
cryptographic algorithms are wrapped behind the two oper-
ations. When a write request is intercepted, SafeFS calls
encode on the loaded driver and the specific cryptographic
algorithm is executed. Similarly, when a read operation is
intercepted, the corresponding decode function is called to
decipher the data. In order to change the driver it is suffi-
cient to unmount the file system, modify the configuration
file, and remount the SafeFS partition.

The driver mechanism can be exploited by layers with di-
verse goals, such as those targeting compression, replication,
or caching. In the next section we discuss the current imple-
mentation of SafeFS and illustrate its driver mechanism in
further details.

5. IMPLEMENTATION
We have implemented a complete prototype of SafeFS

in the C programming language. Currently, it consists of
less than 4,200 lines of code (LOC), including headers and
the modules to parse and load the configuration files. Con-
figuration files are used to describe what layers and drivers
are used, their initialization parameters, and their stacking
order. The code required to implement a layer is also re-
markably concise. For example, our cryptography-oriented
layer only consists of 580 LOC. SafeFS requires a Linux
kernel that natively supports FUSE (v2.6.14). To evaluate
the benefits and drawbacks of different layering combina-
tions, we implemented three unique SafeFS layers, as de-
picted in Figure 3. These layers are respectively concerned
with data size normalization (granularity-oriented), enforc-
ing data privacy policies (privacy-preserving) and data per-
sistence (multiple backend). Since they are used to evaluate

SafeFS

Privacy-Preserving Layer
Drivers

AES DET ...

Granularity-Oriented Layer
Drivers

Block ID

Multiple-backend Layer
Drivers

REP XOR ER

NFS Dropbox Other
Storage

...

FUSE

...

Figure 3: SafeFS: chain of layers and available drivers.

SafeFS, we detail them in the remainder of this section.

5.1 Granularity-oriented layer
It is important to be able to stack layers that operate on

data at different granularity levels, e.g., with different block
sizes. For example, one might need to stack a layer that
reports dynamic sizes for file write and read operations over
a layer that only works with fixed-sized blocks ([50, 7]).

As a more concrete example, the FUSE user-space li-
brary reports file write and read operations with dynamic
sizes. Yet, many cryptographic algorithms only work with
fixed-size block granularity and hence require a block size
translation mechanism. Such translation is provided by the
granularity-oriented layer. This layer opens the way to ex-
ploit block-based encryption, instead of whole-file encryp-
tion, which is more efficient for many workloads where re-
quests are made only for small portions of the files. For
instance, if only 3 bytes of a file are being read and the
block size is 4KB, then only 4KB must be deciphered while
a whole-file approach could require the entire file to be de-
ciphered only to recover those same 3 bytes of data.

In more details, the translation layer creates a logical ab-
straction on top of the actual data size being read, written,
or modified. This is achieved by processing data write and
read requests from the upper layer and manipulating the off-
sets and data sizes to be read/written from underneath lay-
ers. The manipulation of the offsets and sizes is done using
two functions: align_read and align_write. The drivers
of the layer must implement both function calls to define
distinct logical views for read (for align_read) and write
(for align_write) operations. Operations on directories or
file attributes are redirected to adjacent layers pristine.

Our prototype implements two drivers for the translation
layer: a block and an identity driver. The block driver cre-
ates a logical block representation for both file write and
read requests, which will be used transparently by the fol-
lowing layers. This block abstraction is fundamental for
layers whose processing or storage techniques rely on block-
based requests (e.g., block-based encryption, de-duplication,
etc.) [10]. Block size is configured on driver initialization.
On the other hand, the identity driver does not change the
offset or the buffer size of the bytes read or written. We use
this driver as a baseline to understand the overhead of our
block-oriented approach and the layer itself.

5.2 Privacy-preserving layer

The goal of this layer is to protect sensitive information
in a transparent way for applications and other layers of
SafeFS. As explained in Section 4.3, file data being writ-
ten or read is intercepted by the layer and then ciphered
(encode) or deciphered (decode). We implemented three
drivers: standard AES encryption (AES), deterministic en-
cryption (Det), and Identity.

The AES driver leverages the OpenSSL’s own AES-128
block cipher in CBC mode [15]. Both key and initialization
vector (IV) size of the AES cipher are parameters defined
during the initialization of the driver. Our design follows
a block-based approach for ciphering and deciphering data.
Hence, the block driver of the granularity-oriented layer is
crucial to transparently ensure that each encode and de-

code call issued by the AES driver receives the totality of
the bytes for a given block. Each block has a random IV
associated, generated in the encode function, that is stored
as extra padding to the cipher text.2

The Det driver protects the plaintext with a block-based
deterministic cipher (AES-128). This cipher does not need
a new random IV for each encoded block and is hence faster
than randomized encryption. Despite compression algo-
rithms being more efficient in plain-text, this driver helps
detect data redundancy over cipher-text, otherwise impossi-
ble to find with a standard randomized encryption scheme.

Both drivers resort to padding (16 bytes from the AES
padding plus 16 bytes for storing the IV). For example, a
4KB block requires 4,128 bytes of storage. Manipulating
block sizes must be done consistently across filesystem op-
erations. Every size modifying layer must keep track of the
real file size and the modified file size so no assumption is
broken for the upper and lower layers. For instance, if a
layer adds padding data, it only reports the original file size
without the extra padding to the previous stack layer.

Finally, we implemented an Identity driver, which does
not modify the content of intercepted file operations and is
used as an evaluation baseline, similarly to the granularity-
oriented Identity driver. We note that drivers for other en-
cryption schemes (e.g., DES, Blowfish, or RSA) could be
implemented similarly.

5.3 Multiple back-end layer
The storage layers directly deal with persisting data into

storage back-ends. In practice, these back-ends are mapped
to unique storage resources available on the nodes (ma-
chines) where SafeFS is deployed. The number of storage
back-ends is a system parameter. They may correspond to
local hard drives or remote storage back-ends, such as NFS
servers accessible via local mount points. The drivers for
this layer follow the same implementation pattern described
previously, namely via encode and decode functions. The
encode method, upon a write request, is responsible for gen-
erating a set of data pieces to be written in each storage
back-end from the original request. The decode implemen-
tation must be able to recover the original data from a set
of data pieces retrieved from the storage back-ends.

Our evaluation considers three drivers: replication (Rep),
one-time pad (XOR), and erasure coding (Erasure). The
Rep driver fully replicates the content and attributes of files
and folders to all the specified storage back-ends. Thus, if

2The IV is important for decoding the cipher-text and re-
turning the original plain-text but keeping it public after
encryption does not impact the security of the system [35].

one of the back-ends fails, data is still recoverable from the
others. The XOR driver uses one-time pad XOR to protect
files. The driver creates a secure block (secret) by applying
the one-time pad to a file block and a random generated
block. This operation can be applied multiple times using
the previous new secret as input, thus generating multiple
secrets. The original block can be discarded and the secrets
safely stored across several storage back-ends [35]. The con-
tent of the original files can only be reconstructed by ac-
cessing the corresponding parts stored across the distinct
storage back-ends. Finally, the Erasure driver uses erasure
codes such as Reed-Solomon codes [49] to provide reliabil-
ity similar to replication but at a lower storage overhead.
This driver increases data redundancy by generating addi-
tional parity blocks from the original data. Thereafter, a
subset of the blocks is sufficient to reconstruct the original
data. The generated blocks are stored on distinct back-ends,
thus tolerating the unavailability of some of the back-ends
without any data loss. As erasure codes modify the size of
data being processed, this driver resorts to a metadata index
that tracks the offsets and sizes of stored blocks on a per-file
basis. The index allows containing the size-changing behav-
ior of erasure-codes within the layer, thus not affecting any
other layer.

5.4 Layer stacks
The above layers can be configured and stacked to form

different setups. Each setup offers trade-offs between se-
curity, performance, and reliability. The simplest SafeFS
deployable stack consists of the multiple back-end layer plus
the Rep driver with a replication factor of 1 (file operations
issued to a single location). This configuration offers the
same guarantees of a typical FUSE loopback file system.

Increasing the complexity of the layer stack leads to richer
functionalities. By increasing the replication factor and the
number of storage back-ends for the simplest stack, we ob-
tain a file system that tolerates disk failure and file corrup-
tion. Similarly, replacing the Rep with the Erasure driver,
one may achieve a file system with increased robustness and
reduced storage overhead. However, erasure coding tech-
niques only work in block-oriented settings thus requiring
the addition of the granularity-oriented layer to the stack.

When data privacy guarantees are required, one simply
needs to include the privacy-aware layer into the stack.3

Note that when AES and Erasure are combined, the file
system stack only requires a single block oriented layer. This
layer provides a logical block view for requests passed to the
privacy-aware layer. These requests are then automatically
passed as blocks to the multiple back-end layer.

Using the XOR driver provides an interesting privacy-
aware solution, since trust is split on several storage do-
mains. This driver exploits a bitwise technique not depen-
dent on previous bytes to protect information, thus it does
not require a block-based view as privacy-aware drivers.

6. EVALUATION
This section presents our comparative evaluation of the

SafeFS prototype. First, we present the third-party file
systems against which we compare SafeFS in Section 6.1.
Then, in Section 6.2, we describe the selected SafeFS stack

3Due to the block-based nature of the Rep and Erasure
drivers, the granularity-oriented is also required.

configurations and their tradeoffs. Section 6.3 presents the
evaluation setup and the benchmark tools. Finally, Sec-
tion 6.4 focuses on evaluation results.

6.1 Third-party file systems
Since our SafeFS prototype focuses on privacy preserving

file systems, we deployed and ran our suite of benchmarks on
four well-known open-source file systems with encryption ca-
pabilities. More precisely, we evaluate SafeFS against the
CryFS [2], Metfs [13], and LessFS [10] user-space file sys-
tems. We further include eCryptfs [30], a kernel-space file
system available in the Linux mainstream kernel. We se-
lected those for being widely used, freely available, adopted
by the community, and offering different security tradeoffs.
Their characteristics are summarized in Section 2. This sec-
tion deals with details relevant for the evaluation.

CryFS [2] (v0.9.6) is a FUSE-based encrypting file system
that ensures data privacy and protects file sizes, metadata,
and directory structure. It uses AES-GCM for encryption
and is designed to integrate with cloud storage providers
such as Dropbox. For evaluation purposes, we configure
CryFS to store files in a local partition.

EncFS [7] (v1.7.4) is a cross-platform file system also built
atop FUSE. This system has no notion of partitions or vol-
umes. It encrypts every file stored on a given mounting
point using AES with a 192-bit key. A checksum is stored
with each file block to detect corruption or modification of
stored data. In the default configuration, also used in our
benchmarks, a single IV is used for every file, which increases
encryption efficiency but decreases security.

We also evaluate MetFS [13] (v1.1.0) that uses a stream
cipher (RC4) for encryption. When unmounted, the MetFS
partition only stores a single blob file.

LessFS [10] (v1.7.0) supports deduplication, compression
(via QuickLZ used in our experiments) and encryption
(BlowFish), all enabled by default.

eCryptfs [30] (v1.0.4) includes advanced key management
and policy features. All the required metadata are stored in
the file headers. Similar to SafeFS, it encrypts the content
of a mounted folder with a predefined encryption key using
AES-128.

6.2 SafeFS configurations
Our benchmarks use a total of 7 different stack config-

urations (Table 2). Each exposes different performance
tradeoffs and allows us to evaluate the different features
of SafeFS. The chosen stacks are divided in three groups:
baseline, privacy, and redundancy.

The first group of configurations, as the name implies,
serve as baseline file system implementations where there
is no data processing. The FUSE stack is a file system
loopback deployment without any SafeFS code. It simply
writes the content of the virtual file system into a local direc-
tory. The identity stack is an actual SafeFS stack where
every layer uses the identity driver. It corresponds to a
pass-through stack where the storage layer mimics the loop-
back behavior. These two stacks provide means to evaluate
SafeFS framework overhead and individual layer overhead.

The privacy group is used to evaluate the modularity
of SafeFS and measure tradeoffs between performance
and privacy guarantees of different privacy preserving tech-
niques. In our experiments we used three distinct tech-
niques. The AES stack and Det stacks correspond respec-

Granularity-Oriented Privacy-Preserving Multiple-Backend

Groups Stack Block Id AES Det Id Simple XOR Erasure

Baseline
FUSE × × × × ×

√
,1 × ×

Identity ×
√

× × √ √
,1 × ×

Privacy

AES
√

×
√ × ×

√
,1 × ×

Det
√

× ×
√

×
√

,1 × ×
XOR × × × × × ×

√
,3 ×

Redundancy
Rep × × × × ×

√
,3 × ×

Erasure
√

× × × × × × √
,3

Table 2: The different SafeFS stacks deployed in the evaluation. Stacks are divided in three distinct groups: Baseline,
Privacy, Redundancy. The table header holds the three SafeFS layers. Below each layer we show the respective drivers. For
each stack, we indicate the active drivers (the

√
symbol). Layers without any active drivers are not used in the stack. The

indices for Multiple-Backend drivers indicate the number of storage backends used to write data.

tively to a standard and a deterministic encryption mecha-
nism. The AES stack is expected to be less efficient than Det
as it generates a different IV for each block. However, Det
has the weakest security guarantee. The third stack, named
XOR, considers a different trust model where no single stor-
age location is trusted with the totality of the ciphered data.
Data is stored across distinct storage back-ends in such a
way that unless an attacker gains access simultaneously to
all back-ends, it is impossible to recover any sensitive infor-
mation about the original plaintext.

Finally, the two remaining stacks deal with data redun-
dancy. The Rep stack fully replicates files into three storage
back-ends. In our configuration, two out of three back-ends
can fail, while still allowing the applications to recover the
original data. The Erasure stack serves the same purpose
but relies on erasure codes for redundancy instead of tradi-
tional replication. Data is split into 3 fragments (2 data +
1 parity) over 3 back-ends for a reduced storage overhead
of 50%, with respect to replication. This erasure configura-
tion supports the complete failure of one of the back-ends.
These stacks provide an overview of the costs of two different
redundancy mechanisms.

6.3 Experimental Setup
The experiments run on virtual machines (VM) with 4

cores and 4GB of RAM. The KVM hypervisor exposes the
physical CPU to the guest VM with the host-passthrough

option [20]. The VMs run on top of hard disk drives
(HDD) and leverage the virtio module for better I/O per-
formance. We deployed each file system implementation in-
side a Docker (v1.12.3) container with data volumes to by-
pass Docker’s AUFS [4] and hit near-native performance.

We conducted our experimental evaluation using two
commonly used benchmarking programs: db_bench and
filebench. The db_bench benchmark is included in Lev-

elDB, an embeddable key-value store [11]. This benchmark
runs a set of predefined operations on a local key-value store
installed in a local directory. It reports performance met-
rics for each operation on the database. The filebench [8]
tool is a full-fledged framework to benchmark file systems.
It emulates both real-world and custom workloads config-
ured using an workload modeling language (WML). Its suite
of tests includes simple micro-benchmarks as well as richer
workloads that emulate mail- or web-server scenarios. We
leverage and expand this suite throughout our experiments.

6.4 Results

We ran several workloads for each considered file system (4
third-party file systems and 7 SafeFS stacks). The results
have been grouped according to the workloads. First, we
present the results of using db_bench, then filebench and,
finally, we describe the results of running latency analysis
for SafeFS layers.

Microbenchmark: db bench. We first present the re-
sults obtained with db_bench. We pick 7 workloads, each
executing 1M read and write operations on LevelDB, which
stores the data on the selected file systems. The fill100K
test (identified by À) writes 100K entries in random order.
Similarly, the entries are written in random order (fillran-
dom, Á) or sequentially (fillseq, Â). The overwrite (Ã) test
completes the write-oriented test suite by overwriting entries
in random order. For read-oriented tests, we considered 3
cases: readrandom (Ä), to randomly read entries from the
databases, readreverse (Å) to read entries sequentially in
reverse order, and finally readseq (Æ) to read entries in se-
quential order.

Figure 4 presents the relative results of each system
against the same tests executed over a native file system
(ext4 in our deployment). We use a colors to indicate in-
dividual performance against native: red (below 25%), or-
ange (up to 75%), yellow (up to 95%), and green (>= 95%).
MetFS results were discarded due to a lock issue which pre-
vented the database to initialize correctly.

We observe that all systems show worse performance for
write-specific workloads (À–Ã) while performing in yellow
class or better for read-oriented workloads (Ä, Å, and Æ).
The results are heavily affected by the number of entries in
the database (fill100K À vs fillrandom Á). As the size of
the data to encrypt grows, the performance worsens. For
instance, the SafeFS XOR configuration (the one with the
worst performance) drops from 21% to 0.5%. The same
observation applies for CryFS (the system with best perfor-
mance) that drops from 79.78% to 12.33%.

The results for the fillseq Â workload require a closer look
as they have the worst performance in every file system eval-
uated. Since db_bench is evaluating the throughput of Lev-
elDB which is storing its data on the evaluated file-systems,
it is necessary to understand an important property of Lev-
elDB. The database is optimized for write operations, which
results for fillseq, in high throughputs on native file sys-
tems contrasting with the selected file systems, where the
throughput is significantly lower. As a matter of example,
comparing throughputs for fillseq vs fillrandom on native

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

➀ ➁ ➂ ➃ ➄ ➅ ➆ ➀ ➁ ➂ ➃ ➄ ➅ ➆ ➀ ➁ ➂ ➃ ➄ ➅ ➆ ➀ ➁ ➂ ➃ ➄ ➅ ➆ ➀ ➁ ➂ ➃ ➄ ➅ ➆ ➀ ➁ ➂ ➃ ➄ ➅ ➆ ➀ ➁ ➂ ➃ ➄ ➅ ➆ ➀ ➁ ➂ ➃ ➄ ➅ ➆ ➀ ➁ ➂ ➃ ➄ ➅ ➆ ➀ ➁ ➂ ➃ ➄ ➅ ➆ ➀ ➁ ➂ ➃ ➄ ➅ ➆

R
a
ti
o
 a

g
a
in

s
t
n
a
ti
v
e
 (

e
x
t4

)

➀ fill100K ➁ fillrandom ➂ fillseq ➃ overwrite ➄ readrandom ➆ readseq ➅ readreverse

CryFS eCryptFS EncFS LessFS SAFEFS AES SAFEFS Det SAFEFS Erasure SAFEFS FUSE SAFEFS Identity SAFEFS Rep SAFEFS XOR

Figure 4: Relative performance of db_bench workloads against native.

(17.4 MB/s vs. 7.74 MB/s) and CryFS (1.14 MB/s vs. 0.94
MB/s) shows how much of the initial gains provided by Lev-

elDB are lost.
While the processing of data heavily impacts the writing

workloads, reading operations (Ä, Å and Æ) are relatively
unaffected. The results for readrandom range from 85.06%
with LessFS up to 99.81% for eCryptFS. Moreover, in ex-
periments that switch the reading offset, the results are even
better. In more details, the results never drop below 95.67%
(readreverse on EncFS) independently of whether the read-
ing is done from the beginning or the tail of the file.

Overall, the different SafeFS stacks perform similarly for
the different database operations. The privacy stacks (see
Table 2) performs comparably to the other file systems on
most operations. Only the fill100K test shows significant
differences, in particular against CryFS and eCryptFS. As
expected, the deterministic driver provides a better perfor-
mance (46.69%) against AES (40.96%) and XOR (20.98%).
The redundancy stacks perform similarly. The erasure
driver is slightly less efficient (22.11% of the native perfor-
mance) due to the additional coding processing.

Microbenchmark: filebench. Next, we look at the
relative performance of various workloads from filebench.
Figure 5 depicts our results. We use the same color scheme
as for db_bench. The seven workloads, executed over the dif-
ferent file systems and configurations, can be separated in
two sets: application emulations (file-server À, mail-server
Á, web-server Â) and micro-workloads (Ã to Æ). This clas-
sification also introduces 3 major differences.

First, the application benchmarks last for 15 minutes,
while the micro-workloads terminate once a defined amount
of data is read or written. Second, the number of threads
interacting with the system is respectively set to 50, 16,
and 100 for the three workloads À, Á, and Â, while micro-
workloads are single-threaded. Third, the focus of micro-
workloads is to study the behavior of a single type of oper-
ation while the application emulations usually run a mix of
read and write operations.

We discarded LessFS results from this part of the evalu-
ation as the system exhibits inconsistent behavior (i.e., un-
predictable initialization and run time ranging from minutes
to hours) leading to timeouts before completion.

In the micro-workloads (Ã–Æ), we observe the perfor-
mance of the tested solutions in simple scenarios. Reading
workloads (Ã and Å) are most affected by the reading or-
der. Surprisingly, our implementation performs better than
the baseline with Det at 104.68% on random reads. These
observations contrast with the results obtained for sequen-
tial reads where the best performing configuration in this
case is SafeFS fuse (94.24%). On the writing side, micro-
workloads Ä and Æ also display different results. For sequen-

tial writes (Æ), SafeFS Identity tops the results at 55.56%
of the native performance. On the other end of the scale,
SafeFS XOR stalls at 9.14%. The situation does however
get a little better when writing randomly: XOR then jumps
to 14.98%. An improvement that contrasts with the case of
erasure coding (that has to read all the existing data back
before encoding again) where the performance dramatically
drops from 29.93% to 0.7% when switching from sequential
to random writes.

On the application workloads side, the mixed nature of
the operations gives better insights on the performance of
the different systems and configurations. The systems that
make use of classical cryptographic techniques consistently
experience performance hurdles. As the number of write
operations diminishes, from À to Â, the performance impact
decreases accordingly. Another important factor is the use
of weaker yet faster schemes (such as the deprecated stream
cipher RC4 for MetFS or re-using IVs for SafeFS Det). As
expected, those provide better results in all cases. Indeed,
MetFS reaches 39.56% for À and 55.65% for Â, and Det

tops at 38.74% for Á. Resorting to more secure solutions
can still offer good results with SafeFS AES (À: 28.40%,
Á: 32.32%, and Â: 32.79%) but the need for integrated access
control management should not be neglected for an actual
deployment. Figure 5 presents the remaining SafeFS stacks
for redundancy. These also exhibit signs of performance
degradation as the data processing intensifies.

Beyond the specifics of the data processing in each layer,
the performance is also affected by the number of layers
stacked in a configuration. As evidence, we observe that
the Identity stack has a small but noticeable decrease of
performance when compared with other FUSE stacks.

Overall, the privacy-preserving stacks of SafeFS with a
single back-end have a better performance than the other
available systems across the workloads. Only MetFS is ca-
pable of providing a better performance in some workloads.
This benchmark suggests that user-space solutions, such as
those easily implementable via SafeFS, perform competi-
tively against kernel-based file systems.

Microbenchmark: Layers breakdown. In addition
to using db_bench to study the performance degradation in-
troduced by SafeFS, we use some of its small benchmarks
(fill100K, fillrandom, fillseq, overwrite, readrandom, readre-
verse, and readseq) to measure the time spent in the different
layers as the system deals with read and write operations.
To do so, SafeFS records the latency of both operations in
every layer loaded in the stack. The results obtained are
presented in Figure 6. We note that for all these bench-
marks, the initialization phase is part of the record and that
the time stacks show the sum of a layer’s inherent overhead
and the time spent in the underlying layers.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

➀ ➁ ➂ ➃ ➄ ➅ ➆ ➀ ➁ ➂ ➃ ➄ ➅ ➆ ➀ ➁ ➂ ➃ ➄ ➅ ➆ ➀ ➁ ➂ ➃ ➄ ➅ ➆ ➀ ➁ ➂ ➃ ➄ ➅ ➆ ➀ ➁ ➂ ➃ ➄ ➅ ➆

R
a
ti
o
 a

g
a
in

s
t
n
a
ti
v
e
 (

e
x
t4

)
CryFS eCryptFS EncFS MetFS SAFEFS AES SAFEFS Det

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

➀ ➁ ➂ ➃ ➄ ➅ ➆ ➀ ➁ ➂ ➃ ➄ ➅ ➆ ➀ ➁ ➂ ➃ ➄ ➅ ➆ ➀ ➁ ➂ ➃ ➄ ➅ ➆ ➀ ➁ ➂ ➃ ➄ ➅ ➆ ➀ ➁ ➂ ➃ ➄ ➅ ➆ ➀ ➁ ➂ ➃ ➄ ➅ ➆

R
a
ti
o
 a

g
a
in

s
t
n
a
ti
v
e
 (

e
x
t4

)

➀ File-server ➁ Mail-server ➂ Web-server ➃ filemicro_rread_4K ➄ filemicro_rwrite_4K ➅ filemicro_seqread_4K ➆ filemicro_seqwrite_4K

SAFEFS AES SAFEFS Det SAFEFS Erasure SAFEFS FUSE SAFEFS Identity SAFEFS Rep SAFEFS XOR

Figure 5: Relative performance of filebench workloads against native.

 0

 0.2

 0.4

 0.6

 0.8

 1

A
E

S

D
e
t

E
ra

su
re

F
U

S
E

Id
e
n
tity

R
e
p

X
O

R

A
E

S

D
e
t

E
ra

su
re

F
U

S
E

Id
e
n
tity

R
e
p

X
O

R

A
E

S

D
e
t

E
ra

su
re

F
U

S
E

Id
e
n
tity

R
e
p

X
O

R

A
E

S

D
e
t

E
ra

su
re

F
U

S
E

Id
e
n
tity

R
e
p

X
O

R

A
E

S

D
e
t

E
ra

su
re

F
U

S
E

Id
e
n
tity

R
e
p

X
O

R

A
E

S

D
e
t

E
ra

su
re

F
U

S
E

Id
e
n
tity

R
e
p

X
O

R

A
E

S

D
e
t

E
ra

su
re

F
U

S
E

Id
e
n
tity

R
e
p

X
O

R

fill100K fillrandom fillseq overwrite readrandom readreverse readseq

E
x
e

c
u

ti
o

n
 T

im
e

 (
%

)

multi_write sfuse_write align_write multi_read sfuse_read align_read

Figure 6: Execution time breakdown for different SafeFS stacks.

As expected, the time spent in each layer varies according
to the tasks performed by the layers. The 3 most CPU-
intensive stacks (AES, Det and Erasure) concentrate their
load over different layers: sfuse for the first two and multi

for the last one. Indeed, more time is spent in multi, the
lowest layer, in non-privacy-preserving configurations. An-
other noticeable point is the increase in time spent read-
ing data back for Erasure in the multi layer (11.03% for
fill100K, 21.19% for fillrandom, and 21.53% for fillseq) com-
pared to the decrease for Rep (respectively 8.02%, 1.93%,
and 0.05%) and XOR (4.03%, 2.59%, and 0.05%) stacks.

7. CONCLUSION
The design, implementation, and evaluation of file sys-

tems is a complex problem as applications using them have
different requirements in terms of fault-tolerance, data pri-
vacy, or pure performance. This paper proposes SafeFS, a
modular FUSE-based architecture that allows system oper-
ators to simply stack building blocks (layers), each with a
specific functionality implemented by plug-and-play drivers.
This modular and flexible design allows extending layers
with novel algorithms in a straightforward fashion, as well
as reuse of existing FUSE-based implementations.

We compared several SafeFS stacking configurations
against industry-battled alternatives and demonstrated the
trade-offs for each of them. Our extensive evaluation based
on real-world benchmarks hopefully shed some light on the
current practice of deploying custom file systems and will

facilitate future choices for practitioners and researchers.
We envision to extend SafeFS along three main direc-

tions. First, we plan to smooth the efforts to integrate any
existing FUSE file system as a SafeFS layer, for example by
exploring Linux’s LD PRELOAD mechanism, thus avoid-
ing any recompilation step. Second, we envision a context-
and workload-aware approach to choose the best stack ac-
cording to each application’s requirements (e.g. storage ef-
ficiency, resource consumption, reliability, security) leverag-
ing SDS control plane techniques that enforce performance,
security, and other policies across the storage vertical plane
stack [43]. Finally, we intend to improve the driver mecha-
nism to allow for dynamic, on-the-fly reconfiguration.

8. ACKNOWLEDGMENTS
This research was supported by the European Union’s

Horizon 2020 - The EU Framework Programme for Re-
search and Innovation 2014-2020, under grant agreement
No. 653884. This work is financed by the ERDF – Eu-
ropean Regional Development Fund through the Opera-
tional Programme for Competitiveness and International-
isation - COMPETE 2020 Programme within project �
POCI-01-0145-FEDER-00696 �, and by National Funds
through the Portuguese funding agency, FCT - Fun-
dação para a Ciência e a Tecnologia as part of project
�UID/EEA/50014/2013�.

9. REFERENCES

[1] BestCRYPT. http://www.jetico.com/products/
personal-privacy/bestcrypt-container-encryption.

[2] CryFS. https://www.cryfs.org/.

[3] DM-Crypt. http://www.saout.de/misc/dm-crypt/.

[4] Docker and aufs in practice. https:
//docs.docker.com/engine/userguide/storagedriver/
aufs-driver/#/aufs-and-docker-performance.

[5] eCryptfs. http://ecryptfs.org/.

[6] EFS. https://technet.microsoft.com/en-us/library/
bb457065.aspx.

[7] EncFS. https://github.com/vgough/encfs.

[8] FileBench. https://github.com/filebench/filebench.

[9] FUSE. https://sourceforge.net/projects/fuse/.

[10] LessFS. http://www.lessfs.com/wordpress/.

[11] Leveldb. http://leveldb.org/.

[12] Linux Crypto API.
https://kernel.org/doc/html/latest/crypto/.

[13] MetFS. http://www.enderunix.org/metfs/.

[14] Mountable HDFS.
https://wiki.apache.org/hadoop/MountableHDFS.

[15] OpenSSL. https://www.openssl.org.

[16] PPDD. http://linux01.gwdg.de/˜alatham/ppdd.html.

[17] S3FS. https://github.com/s3fs-fuse/s3fs-fuse.

[18] S3QL. http://www.rath.org/s3ql-docs/.

[19] SshFS. https://github.com/libfuse/sshfs.

[20] Tuning kvm.
http://www.linux-kvm.org/page/Tuning KVM.

[21] C. M. Adams and S. E. Tavares. Designing S-boxes for
ciphers resistant to differential cryptanalysis. In
Proceedings of the 3rd Symposium on State and
Progress of Research in Cryptography, Rome, Italy,
pages 181–190, 1993.

[22] A. Adya, W. J. Bolosky, M. Castro, G. Cermak,
R. Chaiken, J. R. Douceur, J. Howell, J. R. Lorch,
M. Theimer, and R. P. Wattenhofer. Farsite:
Federated, available, and reliable storage for an
incompletely trusted environment. SIGOPS Oper.
Syst. Rev., 36(SI):1–14, 2002.

[23] A. Alba, G. Alatorre, C. Bolik, A. Corrao, T. Clark,
S. Gopisetty, R. Haas, R. I. Kat, B. S. Langston, N. S.
Mandagere, D. Noll, S. Padbidri, R. Routray, Y. Song,
C. H. Tan, and A. Traeger. Efficient and agile storage
management in software defined environments. IBM
Journal of Research and Development, 58:5:1–5:12,
2014.

[24] J. Bent, G. Gibson, G. Grider, B. McClelland,
P. Nowoczynski, J. Nunez, M. Polte, and M. Wingate.
PLFS: A Checkpoint Filesystem for Parallel
Applications. In Proceedings of the Conference on
High Performance Computing Networking, Storage
and Analysis, pages 21:1–21:12, 2009.

[25] A. Bessani, R. Mendes, T. Oliveira, N. Neves,
M. Correia, M. Pasin, and P. Verissimo. SCFS: A
Shared Cloud-backed File System. In Proceedings of
the USENIX Annual Technical Conference, pages
169–180, 2014.

[26] M. Blaze. A Cryptographic File System for UNIX. In
Proceedings of the 1st ACM Conference on Computer
and Communications Security, pages 9–16, 1993.

[27] M. Carlson, A. Yoder, L. Schoeb, D. Deel, C. Pratt,
C. Lionetti, and D. Voigt. Software Defined Storage.

Storage Networking Industry Assoc. working draft,
Apr, 2014.

[28] G. Cattaneo, L. Catuogno, A. D. Sorbo, and
P. Persiano. The Design and Implementation of a
Transparent Cryptographic File System for UNIX. In
Proceedings of the FREENIX Track: 2001 USENIX
Annual Technical Conference, pages 199–212, 2001.

[29] R. Gracia-Tinedo, P. Garćıa-López,
M. Sánchez-Artigas, J. Sampé, Y. Moatti, E. Rom,
D. Naor, R. Nou, T. Cortés, W. Oppermann, and
P. Michiardi. IOStack: Software-Defined Object
Storage. IEEE Internet Computing, 20(3):10–18, 2016.

[30] M. A. Halcrow. eCryptfs: An enterprise-class
encrypted filesystem for linux. In Proceedings of the
2005 Linux Symposium, volume 1, pages 201–218,
2005.

[31] J. S. Heidemann and G. J. Popek. File-system
Development with Stackable Layers. ACM Trans.
Comput. Syst., 12(1):58–89, Feb. 1994.

[32] S. Heron. Advanced Encryption Standard (AES).
Network Security, 2009(12):8–12, 2009.

[33] A. D. McDonald and M. G. Kuhn. StegFS: A
Steganographic File System for Linux. In Information
Hiding: Third International Workshop, IH’99,
Dresden, Germany, September 29 - October 1, 1999
Proceedings, pages 463–477, 2000.

[34] M. K. McKusick, W. N. Joy, S. J. Leffler, and R. S.
Fabry. A fast file system for UNIX. ACM Transactions
on Computer Systems (TOCS), 2(3):181–197, 1984.

[35] C. Paar and J. Pelzl. Understanding Cryptography: A
Textbook for Students and Practitioners. Springer
Publishing Company, Incorporated, 1st edition, 2009.

[36] B. Schneier. Description of a new variable-length key,
64-bit block cipher (Blowfish). In International
Workshop on Fast Software Encryption, pages
191–204. Springer, 1993.

[37] K. Shvachko, H. Kuang, S. Radia, and R. Chansler.
The Hadoop Distributed File System. In Proceedings
of the 2010 IEEE 26th Symposium on Mass Storage
Systems and Technologies (MSST), pages 1–10, 2010.

[38] N. Standard. Data Encryption Standard (DES).
Federal Information Processing Standards Publication,
1999.

[39] I. Stefanovici, B. Schroeder, G. O’Shea, and
E. Thereska. sRoute: Treating the Storage Stack Like
a Network. In Proceedings of the 14th USENIX
Conference on File and Storage Technologies, pages
197–212, 2016.

[40] J. Stribling, Y. Sovran, I. Zhang, X. Pretzer, J. Li,
M. F. Kaashoek, and R. Morris. Flexible, Wide-area
Storage for Distributed Systems with WheelFS. In
Proceedings of the 6th USENIX Symposium on
Networked Systems Design and Implementation, pages
43–58, 2009.

[41] H. Takabi, J. B. D. Joshi, and G.-J. Ahn. Security and
privacy challenges in cloud computing environments.
IEEE Security and Privacy, 8:24–31, 2010.

[42] V. Tarasov, A. Gupta, K. Sourav, S. Trehan, and
E. Zadok. Terra Incognita: On the Practicality of
User-Space File Systems. In 7th USENIX Workshop
on Hot Topics in Storage and File Systems
(HotStorage 15), 2015.

[43] E. Thereska, H. Ballani, G. O’Shea, T. Karagiannis,
A. Rowstron, T. Talpey, R. Black, and T. Zhu.
IOFlow: A Software-defined Storage Architecture. In
Proceedings of the Twenty-Fourth ACM Symposium on
Operating Systems Principles, pages 182–196, 2013.

[44] V. Turner, J. F. Gantz, D. Reinsel, and S. Minton.
The digital universe of opportunities: Rich data and
the increasing value of the internet of things. IDC
Analyze the Future, 2014.

[45] C. Ungureanu, B. Atkin, A. Aranya, S. Gokhale,
S. Rago, G. Calkowski, C. Dubnicki, and A. Bohra.
HydraFS: A High-throughput File System for the
HYDRAstor Content-addressable Storage System. In
Proceedings of the 8th USENIX Conference on File
and Storage Technologies, pages 17–17, 2010.

[46] B. K. R. Vangoor, V. Tarasov, and E. Zadok. To
FUSE or Not to FUSE: Performance of User-Space
File Systems. In Proceedings of the 15th USENIX
Conference on File and Storage Technologies, pages
59–72, 2017.

[47] M. Vrable, S. Savage, and G. M. Voelker. BlueSky: A
Cloud-backed File System for the Enterprise. In
Proceedings of the 10th USENIX Conference on File
and Storage Technologies, pages 19–19, 2012.

[48] S. R. Walli. The POSIX Family of Standards.
StandardView, 3(1):11–17, 1995.

[49] S. B. Wicker and V. K. Bhargava. Reed-Solomon codes
and their applications. John Wiley & Sons, 1999.

[50] C. P. Wright, M. C. Martino, and E. Zadok. NCryptfs:
A Secure and Convenient Cryptographic File System.
In Proceedings of the USENIX Annual Technical
Conference, 2003.

[51] E. Zadok, J. M. Andersen, I. Badulescu, and J. Nieh.
Fast Indexing: Support for Size-Changing Algorithms
in Stackable File Systems. In Proceedings of the
General Track: USENIX Annual Technical
Conference, pages 289–304, 2001.

[52] E. Zadok, I. Badulescu, and A. Shender. CryptFS: A
stackable vnode level encryption file system. Technical
report, Technical Report CUCS-021-98, Computer
Science Department, Columbia University, 1998.

[53] E. Zadok, I. Badulescu, and A. Shender. Extending
File Systems Using Stackable Templates. In
Proceedings of the USENIX Annual Technical
Conference, pages 5–5, 1999.

[54] E. Zadok and J. Nieh. FiST: A Language for Stackable
File Systems. In Proceedings of the USENIX Annual
Technical Conference, pages 1–16, 2000.

