
A Case for Dynamically Programmable Storage
Background Tasks

Ricardo Macedo
INESC TEC and U. Minho
ricardo.g.macedo@inesctec.pt

Alberto Faria
INESC TEC and U. Minho
alberto.c.faria@inesctec.pt

João Paulo
INESC TEC and U. Minho
joao.t.paulo@inesctec.pt

José Pereira
INESC TEC and U. Minho

jop@di.uminho.pt

Abstract—Modern storage infrastructures feature long and
complicated I/O paths composed of several layers, each employing
their own optimizations to serve varied applications with fluctu-
ating requirements. However, as these layers do not have global
infrastructure visibility, they are unable to optimally tune their
behavior to achieve maximum performance. Background storage
tasks, in particular, can rapidly overload shared resources, but
are executed either periodically or whenever a certain threshold
is hit regardless of the overall load on the system.

In this paper, we argue that to achieve optimal holistic
performance, these tasks should be dynamically programmable
and handled by a controller with global visibility. To support this
argument, we evaluate the impact on performance of compaction
and checkpointing in the context of HBase and PostgreSQL. We
find that these tasks can respectively increase 99th percentile
latencies by 955.2% and 61.9%. We also identify future research
directions to achieve programmable background tasks.

Index Terms—Storage Systems, Background Tasks, I/O Inter-
ference, Programmable Storage, Software-Defined Storage

I. INTRODUCTION

A massive, ever-growing amount of digital information is

continuously generated, stored, and processed in both public

and private premises [1]. The consequent continual need for

greater storage and processing capacity has significantly in-

creased the complexity of the underlying infrastructures. These

feature long and complicated I/O paths composed of several

layers (e.g., hypervisors, operating systems, device drivers,

I/O schedulers, file systems, databases), each employing its

own optimizations (e.g., caching [2], I/O sequentialization [3],

task prioritization [4]) to serve a variety of applications with

requirements that fluctuate over time.

However, as these layers do not have global infrastructure

visibility, they are unable to tune their behavior in order to

achieve optimal system-wide performance. Thus, the configu-

ration of each layer is currently done on an individual basis.

Under this design, ensuring optimal end-to-end performance

is hard, and if not correctly assessed can lead to high levels

of I/O interference and performance degradation [4, 5]. This

effect becomes further amplified when the same resources are

operated on by concurrent I/O services, coming from other

layers of the I/O stack or even from internal background

activities of a given layer that are competing for resources

with the corresponding foreground tasks.

In particular, background tasks such as compaction [6],

checkpointing [7], and replication [8] are predefined I/O-

intensive activities that can rapidly overload shared resources,

introducing significant I/O interference and workload burstiness,

ultimately impacting overall throughput and latency. Currently,

to minimize interference with foreground activities, background

tasks are processed in a best-effort manner, being executed

either periodically or whenever a certain threshold is hit. In

many cases, these tasks are also rate-limited to avoid impacting

other foreground activities. Again, the decision of when and

how to execute such operations is taken by the layer itself

regardless of the overall load on the infrastructure at the time.

In this paper, we argue that in order to achieve optimal

holistic performance, storage background tasks should be

dynamically programmable and their execution handled by

a control module with system-wide visibility and end-to-end

I/O control. Each layer should thus expose its set of supported

background tasks and corresponding configurations to such a

controller, which would in turn provide the building blocks

for executing each task with optimal I/O performance. Such

a programmable environment is aligned with those proposed

by current Software-Defined Storage (SDS) solutions, which

ensure holistic control of the I/O stack by breaking the vertical

alignment of conventional infrastructures and separating storage

policies from the control mechanisms that enforce them, thus

enabling Quality of Service (QoS) provisioning, performance

isolation, and resource fairness [5, 9].

To support this argument, we evaluate the impact of different

background tasks, namely compaction and checkpointing,

and corresponding configurations on the performance of two

data stores: HBase, a highly-available distributed key-value

store, and PostgreSQL, a relational database. Under HBase
deployments, results show that background tasks introduce a

performance degradation of up to 87.3% and 955.2% for mean

and 99th percentile latencies, respectively. Under PostgreSQL
deployments, mean and 99th percentile latencies experienced

a performance degradation of at most 20.7% and 61.9%

respectively, when executed under varying task settings.

Through the observed results we further substantiate our argu-

ment and provide future research directions to achieve the afore-

mentioned design. The full evaluation results are also publicly

available at https://rgmacedo.github.io/paper-background-tasks.

This paper is organized as follows. §II surveys related

work. §III depicts the general organization of the contem-

plated I/O stacks. §IV describes the evaluation methodology,

while §V presents the obtained results. §VI discusses current

challenges and future directions, and concludes the paper.

7

2019 38th International Symposium on Reliable Distributed Systems Workshops (SRDSW)

978-1-7281-4255-5/19/$31.00 ©2019 IEEE
DOI 10.1109/SRDSW49218.2019.00009

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on July 01,2024 at 20:04:38 UTC from IEEE Xplore. Restrictions apply.

II. RELATED WORK

Recent works on SDS have been proposed to achieve holistic

control of the I/O stack by breaking the vertical alignment

of conventional infrastructures and separating storage policies

from the mechanisms that employ them [5, 9]. However, current

solutions do not consider the programmability and holistic

control of background tasks, thus limiting their ability to

enforce policies at higher levels of performance and QoS.

The impact of mixed background and foreground tasks in

storage I/O performance has already been contemplated in the

literature [4, 10]. These studies are mainly focused on the I/O

stack of modern operating systems, i.e., kernel caching, file
system, and block device layers, and propose novel scheduling

solutions for orchestrating I/O resources across the different

tasks according to their priority. Similarly, several studies have

investigated the root causes of tail latency for different I/O

layers (e.g., Linux schedulers, file systems) while taking into

account the performance impact and I/O interference generated

by background processes, such as garbage collection and file

system initialization [11, 12, 13].

For the HBase software stack, previous studies have drawn

conclusions on the overall I/O impact induced by compaction

processes when performed in local and distributed settings [14].

Furthermore, recent works have also implemented several

optimizations over Log-Structured Merge (LSM) tree [15] data

stores. [16, 17, 18] provide internal LSM-level optimizations

to decrease the amount of work performed during background

operations, while [19] proposes an LSM-based I/O scheduling

framework to efficiently manage regular I/O flows and internal

maintenance work, and thus reduce latency spikes. However,

such solutions are only applicable to LSM-based data stores,

comprehending partial visibility of the I/O stack, and are

designed to exclusively improve either overall throughput or

tail latency.

This paper sets out to show that the impact of background

tasks is not limited to the above-mentioned systems and

components and that, in many cases, these tasks must be

efficiently managed at the user level. The conducted study and

the corresponding observations allow us to argue two main

points that are not contemplated by previous studies. First,

for complex applications, background and foreground tasks

need to be considered in a holistic fashion, acknowledging

both kernel- and user-space components that may have an

impact in shared I/O resources. Secondly, simply applying

scheduling and prioritization mechanisms may not be sufficient

to ensure complex storage policies for applications and users

(e.g., enforcing throughput objectives and latency percentiles

under high I/O interference). We argue that this will only

be possible by increasing the programmability of critical I/O

components. To the best of our knowledge, these points are

not addressed by previous work.

III. CASE STUDIES

Modern storage infrastructures comprehend multiple indepen-

dent layers throughout the I/O path. Typical I/O stack settings

of these infrastructures can be composed of applications,

ApplicationApplication

File SystemFile System

PostgreSQ
L

HFile

Block Cache

Memstore Memstore

WAL
HFile

H
B

ase
H

D
FSHFile

shared buffers

WAL buffer

WAL

Fig. 1. I/O stack of typical HBase and PostgreSQL deployments.

databases, caches, file systems, and storage devices. Figure 1

illustrates two examples of such stacks. The left side depicts

a typical HBase deployment, composed of different I/O

applications that submit read and write requests to HBase,
a distributed, scalable, open-source NoSQL data store, which

in turn reads/writes data from/to HDFS, a highly available

distributed file system, finally backed by a local file system.

On the right side, a PostgreSQL relational database serves

incoming requests of different applications, and is directly

backed by a local file system.

A. HBase

A typical HBase deployment is composed of several Re-
gionServers and an HMaster. RegionServers are the data

units of the database, serving read and write requests from

applications, while the HMaster is responsible for coordinating

the overall database infrastructure and redirecting clients to the

RegionServers that hold their data. To improve performance,

database tables are horizontally partitioned by row key range

into Regions, which are then assigned to RegionServers.
For write requests, applications submit a key-value pair to

the RegionServer, which is first written to a Write Ahead

Log (WAL) file that is used to persist all data on permanent

storage and assist data recovery in case of server failure.

Once persisted in the WAL, data is then written to a write-

oriented caching instance known as Memstore, finally sending

an acknowledgment message back to the application. The

Memstore holds sorted key-value pairs of write requests.

Moreover, each Region comprises several Memstore instances,

each for a different part of the table. When the Memstore
reaches a predefined size (e.g., 128 MiB), its data is flushed

to HDFS as a new HFile, which is then persistently written at

the underlying file system. Internally, HBase stores its data in

an LSM tree, similarly to other data stores [6, 20].

For reads, requests are first sent to a read-oriented caching

instance known as Block Cache. If the requested records are

not found, the Memstore is then checked. If the records are

held in neither of these caching instances, HBase then reads

a number of HFiles until they are found. After successfully

reading the requested records, they are inserted into the Block
Cache and sent back to the application.

The generation of different HFiles per Memstore instance

leads to multiple files being examined during read requests,

thus resulting in read amplification. To address this problem,

8

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on July 01,2024 at 20:04:38 UTC from IEEE Xplore. Restrictions apply.

HBase executes a background compaction process that merges

a number of small-sized HFiles into fewer larger ones, a

process termed minor compaction. Moreover, HBase provides

an additional compaction process, namely major compaction,
that merges and rewrites all HFiles comprehended in a Region
into a single large file, removing all previously deleted entries in

the process. While they significantly improve read performance,

compaction processes can severely overload disk and network

resources, introducing increased I/O interference and burstiness

in the I/O stack.

B. PostgreSQL

Regarding PostgreSQL, typical deployments consist of a

database server that handles requests from multiple applica-

tions. To access the database, a client connects to a running

postmaster that establishes a communication channel between

the application and the database.

For write operations (e.g., INSERT, UPDATE, and DELETE

statements), the database server maps the corresponding blocks

in the shared buffers memory area and directly modifies them.

The changes are written to a WAL buffer, usually as logical

deltas, but in some cases by fully copying the complete physical

8 KiB block (i.e., immediately after a checkpoint).

On commit, changes are persistently written to a WAL file

on disk. Directly writing data blocks to the respective data

files would lead to significant performance overhead due to

the resulting random write pattern, and endanger recovery as

writing 8 KiB blocks cannot be done atomically with common

file system semantics. Instead, writes at the WAL file are

sequential and can be truncated to include only complete

records. Dirty blocks in shared memory are eventually written

to the respective data files by a separate background process,

becoming available again for other uses.

For read operations (e.g., SELECT statements), required

file blocks are also mapped to shared buffers, if not already

present, being fetched from the kernel caching layer or read

from disk. When the block is no longer needed, and if it is

not dirty as a consequence of concurrent write operations, it

can be immediately removed from shared buffers and remains

only in the operating system cache.

In order to truncate the log and allow for fast recovery, Post-
greSQL periodically performs checkpoints, a synchronization

event that flushes all dirty data pages in the shared buffers to

disk. Such an event guarantees that, in case of a failure, a crash

recovery procedure seeks for the latest checkpoint record to

determine from which point it should start the REDO operation.

Checkpointing tasks are conducted in the background and are

triggered either when the WAL file is about to exceed a certain

size (1 GiB by default) or upon a checkpoint timeout (5 minutes

by default). Setting these values to a lower bound will lead

PostgreSQL to conduct checkpoints more often, allowing the

database to recover faster after a failure.

To reduce I/O interference and workload burstiness, Post-
greSQL throttles the write performance of checkpointing,

leading to dirty buffers being written over a predefined period

of time. To balance these trade-offs, PostgreSQL provides a

checkpoint completion target parameter that allows database

administrators to adjust the throughput at which checkpoints are

created. When this parameter is set to a low value, checkpoints

are performed faster, resulting in I/O burstiness. Setting it to a

higher value ensures sustained performance and reduced I/O

interference for foreground activities, leading however to higher

recovery times after failure.

IV. METHODOLOGY

To illustrate the impact of background tasks on storage

system performance and underline the importance of making

them programmable, we evaluated the overhead imposed by

each of the two types of background task identified above.

Here, we describe the adopted evaluation methodology, which

in particular aims to answer the following questions:

• How much overhead do these background tasks impose?
• How does their overhead vary across operation types?
• How does their overhead vary across time?
• How do these tasks impact tail latencies?
• How do these tasks’ configuration parameters influence

their impact on performance?
a) Evaluated deployments: To quantify the overhead

imposed by the compaction process, we considered a local

deployment consisting of an HBase v2.0.5 instance (1 HMaster,
1 RegionServer, and 1 Zookeeper instance, all in the same

machine; dedicated heap size = 4 GiB, Memstore size = 0.4,

block cache size = 0.25), backed by an HDFS v2.9.2 instance

(1 NameNode and 1 DataNode, both in the same machine as

HBase; replication factor = 1; block size = 128 MiB; dedicated

heap size = 1 GiB), in turn backed by an ext4 file system.

In turn, to characterize the impact of checkpointing on

performance, we considered a local deployment consisting

of a PostgreSQL v11.3 instance backed by an ext4 file system.

Unless stated otherwise, remaining configuration parameters

were kept at their default values for all components of both

deployments.

b) Workloads: The aforementioned deployments were

evaluated under several workloads generated using YCSB

v0.15.0 [21] (running locally with the deployments), with

different operation type proportions and access distributions:

• Workload A: 50% read, 50% update, Zipfian;

• Workload B: 100% update, Zipfian;

• Workload C: 100% read, uniform;

• Workload D: 5% read, 95% insert, Zipfian;

• Workload E: 95% scan, 5% insert, Zipfian;

• Workload F: 50% read, 50% read-modify-write, Zipfian.

These workloads were previously used in [22], with the

exception of workload C which we modified to follow a uniform

distribution instead of the Zipfian distribution employed by the

remaining workloads, as it would also be interesting to analyze

a different access pattern. Workloads were executed with both

1 and 10 threads.

We performed between 3 and 11 runs per combination of

deployment, configuration, workload, and number of threads.

A loading phase was conducted before each run, populating

9

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on July 01,2024 at 20:04:38 UTC from IEEE Xplore. Restrictions apply.

0
0.5
1
1.5
2

RU RU U U R R R I R I S I S I RM RM

 B C D E F

Fig. 2. HBase mean latency under the configuration with compaction
effects normalized against the configuration without compaction effects, under
workloads with 1 thread () and 10 threads (). Error bars represent
the 95% confidence interval, calculated as per Fieller’s theorem. (R – read,
U – update, I – insert, S – scan, M – read-modify-write)

the database with 12.5 million records (using approximately

16 GiB of disk space). After each run, the file system was

recreated, caches were purged, and a 2 minute cool down

period was given. Runs were configured to end after 10 million

operations were performed or 17 minutes had elapsed.

c) Deployment configurations: The HBase deployment

was evaluated under two scenarios (which we refer to as

configurations): (1) with compaction effects, performing each

workload immediately after the corresponding loading phase

and thus evaluating the deployment under the effect of ongoing

compactions; and (2) without compaction effects, waiting 30

minutes after the loading phase — enough time for resulting

compactions to finish. This allowed us to measure the overhead

imposed by the compaction process.

To understand the performance impact of checkpointing,

we evaluated 6 configurations of the PostgreSQL deployment,

each with a different combination of values for the maximum
WAL size parameter — either 128 or 1024 MiB — and the

checkpoint completion target parameter — 0.1, 0.5, or 0.9.

We will denote these configurations by (x, y) tuples, where

x represents the maximum WAL size (in MiB) and y is

the completion target value. The default PostgreSQL settings

correspond to the (1024, 0.5) configuration.

d) Collected metrics: YCSB was configured to report the

achieved mean and percentile latencies both for each run as

a whole and for each 10 second period. Since YCSB reports

throughput as simply the inverse of latency multiplied by the

number of threads, we only present latency values.

For each combination of deployment, configuration, work-

load, and number of threads, the sample mean of each collected

metric was calculated, and Student’s t-distribution was used to

compute the 95% confidence intervals for the corresponding

population means. The half-width of those confidence intervals

for values presented later or otherwise contemplated in our

analysis is under 10% of the respective sample mean.

Finally, Dstat v0.7.3 was used to observe CPU, memory,

and disk utilization.

e) Experimental environment: Experiments were con-

ducted using machines with the following specifications: one

Intel Core i3-4170 CPU, clocked at 3.70 GHz, with 2 physical

and 4 logical cores; 8 GiB of DDR3 RAM, clocked at

1600 MHz; and one 119 GiB, SATA-III Samsung MZ7LN128

solid-state drive. Software-wise, the machines used Ubuntu

Server 18.04 LTS for AMD64 with Linux kernel v4.15.0.

10-4

10-3

10-2

10-1

100

102 103 104 105 106

P[
X

 x

]

Latency (s)

W/o compaction effects, scan
W/o compaction effects, insert
With compaction effects, scan
With compaction effects, insert

Fig. 3. Complementary cumulative distribution function for the latency of
scan and insert operations attained by both HBase configurations under a
single run of workload E with 10 threads.

V. EVALUATION

Here, we present the results of the evaluation conducted

on the HBase (§V-A) and PostgreSQL (§V-B) deployments

described above. The full results are also available at https:

//rgmacedo.github.io/paper-background-tasks.

A. HBase – Compaction

Figure 2 depicts the mean latency achieved by the HBase
deployment under the configuration with compaction effects,

normalized against the configuration without compaction effects

(taken as the baseline in the discussion that follows), under all

workloads defined previously with both 1 and 10 threads.

Write-oriented operations, namely updates and inserts,

present a performance degradation of at most 14.7% for mean

latency, while read-oriented operations, namely reads and scans,

exhibit a performance degradation of at most 87.3%. At the 99th

percentile latency, depending on the workload, write operations

experience performance degradations of at most 40.0%, while

for reads, overhead ranges from being imperceptible to being

as high as 955.2%. For read-modify-write operations, mean

latency results experience overheads of at least 27.6%, while

at the 99th percentile overheads of up to 281.0% are observed.

With respect to resource utilization, effects of compaction

processes do not entail significant differences. CPU utilization

remains mostly unaltered, while read and write disk throughput

experiences low variation — a maximum absolute difference of

33 and 15 MiB/s, respectively. Interestingly, during compaction

effects, this observed increase of disk throughput remains con-

stant throughout the overall execution time (for all observations).

This is due to the default throttling policy that HBase employs

over compactions, limiting their I/O performance so as not

to introduce high interference and performance overhead in

incoming I/O requests [23].

As observed, write operations have a much lower impact

in mean latency compared to read operations. This is due

to two main factors: (1) the write operation flow at HBase
introduces less overhead than read-oriented ones, as writes are

first sequentially written to the WAL and then stored at the

in-memory Memstore; and (2) the experienced compactions

are minor compactions, thus not imposing major disk overload

and I/O interference to write operations.

10

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on July 01,2024 at 20:04:38 UTC from IEEE Xplore. Restrictions apply.

0

0.5

1

1.5

RU RU RU RU RU RU RU RU RU RU U U U U U U U U U U RM RM RM RM RM RM RM RM RM RM

(1
02

4,
 0

.1
)

(1
02

4,
 0

.9
)

(1
28

, 0
.5

)

(1
28

, 0
.1

)

(1
28

, 0
.9

)

(1
02

4,
 0

.1
)

(1
02

4,
 0

.9
)

(1
28

, 0
.5

)

(1
28

, 0
.1

)

(1
28

, 0
.9

)

W rkl d

(1
02

4,
 0

.1
)

(1
02

4,
 0

.9
)

(1
28

, 0
.5

)

(1
28

, 0
.1

)

(1
28

, 0
.9

)

(1
02

4,
 0

.1
)

(1
02

4,
 0

.9
)

(1
28

, 0
.5

)

(1
28

, 0
.1

)

(1
28

, 0
.9

)

W rkl d B

(1
02

4,
 0

.1
)

(1
02

4,
 0

.9
)

(1
28

, 0
.5

)

(1
28

, 0
.1

)

(1
28

, 0
.9

)

(1
02

4,
 0

.1
)

(1
02

4,
 0

.9
)

(1
28

, 0
.5

)

(1
28

, 0
.1

)

(1
28

, 0
.9

)

 W rkl d F

Fig. 4. PostgreSQL mean latency normalized against the (1024, 0.5) configuration, under workloads with 1 thread () and 10 threads (). Error bars
represent the 95% confidence interval, calculated as per Fieller’s theorem. (R – read, U – update, M – read-modify-write)

10

25

(1
28

, 0
.1

)

10

25

99
th

 p
er

ce
nt

ile
 la

te
nc

y
(m

s/
op

)

(1
28

, 0
.5

)

10

25

(1
28

, 0
.9

)

 0 5 10 15

ime (minutes)

Fig. 5. 99th percentile latency variation for the update operation over the
duration of a single run for each of the (128, 0.1), (128, 0.5), and (128, 0.9)
PostgreSQL configurations, under workload A with 1 thread.

On the other hand, read operations experience significant

mean latency overhead due to the inherent dependency over

HFiles currently being compacted. Specifically, compactions

are mainly motivated to improve read performance, rewriting

several small HFiles into fewer larger ones. As such, under

compactions effects, read operations will be severely influenced

by the concurrent merging operations being conducted. More-

over, this becomes further amplified at the 99th and higher

percentile latencies, as depicted in Figure 3, in which a point

(x, y) signifies that y is the fraction of requests that experience a

latency of x μs or higher. As observed, insert requests present

similar latency for all percentiles. Contrarily, scan requests

experience a significant latency increase between the 50th and

99.99th percentiles, achieving a 452 ms latency at the 99.99th

percentile, a 509% increase compared to the baseline.

B. PostgreSQL – Checkpointing

Figure 4 shows the mean latency achieved by the various

PostgreSQL configurations defined previously, normalized

against the default (1024, 0.5) configuration, under workloads

A, B, and F with both 1 and 10 threads.

Results show that the completion target value does not signif-

icantly impact performance when configured with a 1024 MiB

WAL size ((1024, y) configurations). Specifically, the overhead

on mean latency ranges from being imperceptible to up to

8.9%. Analogously, at the 99th percentile latency, performance

is degraded by at most 8.7%. Contrarily, under a 128 MiB

WAL size, all workloads experienced a much more noticeable

performance degradation in both mean and 99th percentile

latencies. As opposed to the HBase deployments (§V-A), both

read- and write-oriented operations were equally exposed to

latency overheads. Specifically, experiments conducted for the

(128, 0.5), (128, 0.1), and (128, 0.9) configurations showed a

performance degradation for the mean latency of at most 13.9%,

20.7%, and 17.8%, respectively. Likewise, this effect is further

amplified at 99th percentile latencies, exposing an overhead

of 33.2%, 61.9%, and 33.3% under the same configurations.

This is due to the high checkpoint frequency entailed by small-

sized WAL files. Regarding resource utilization, no significant

differences are observed when varying the WAL size and

completion target value.

As observed, PostgreSQL WAL size plays a major role

in the overall performance, as flushing larger WAL files to

the file system provides better end-to-end performance when

compared to smaller sizes, thus ensuring sustained latency

performance. On the other hand, despite the low differences

in mean latency, PostgreSQL checkpoint completion target

noticeably impacts latencies at the 99th and higher percentiles,

introducing severe I/O interference and performance variability.

Figure 5 depicts a representative case, showing the performance

variation under different checkpoint completion target values.

While the achieved mean latency was 4.598 ms, 4.559 ms,

and 4.755 ms for the (128, 0.5), (128, 0.1), and (128, 0.9)
configurations, respectively, latency at the 99th percentile

obtained 13.060 ms, 14.729 ms (+12.7%), and 12.769 ms (-

2.2%) for the same configurations. When the completion target

is set to a higher value, namely 0.9, PostgreSQL throttles the

write performance for WAL files, providing a more conservative

and sustained performance for incoming I/O requests. When set

to a lower value, namely 0.1, the system experiences increased

I/O burstiness, achieving 10.687 ms and 24.383 ms as minimum

and maximum 99th percentile latencies (observed at 10 second

intervals), respectively.

VI. DISCUSSION AND CONCLUSION

Results show that both compaction and checkpointing

background tasks heavily impact the performance of foreground

11

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on July 01,2024 at 20:04:38 UTC from IEEE Xplore. Restrictions apply.

activities, introducing significant I/O interference and perfor-

mance degradation of both mean and 99th percentile latencies.

The reason for this impact on performance is twofold. First,

by default, HBase throttles both read and write performance

of compactions and simultaneously does not provide sufficient

building blocks to dynamically tune such settings, forcing

applications to experience I/O interference and performance

degradation for longer periods of time. These background

tasks should be inherently programmable in order to adjust

compaction primitives to the overall infrastructure load, and to

comply with varying storage policies submitted by applications.

Second, although PostgreSQL already provides a wide set of

primitives to adjust checkpointing processes, these cannot be

dynamically tuned to the overall load of the infrastructure. As

such, they are not sufficient to ensure complex storage policies

for applications and users with time varying requirements.

We thus restate our argument that to attain optimal holistic

performance, storage background tasks should be dynamically

programmable and their execution handled by a control module

with global infrastructure visibility and holistic I/O control.

Following SDS principles, we identify two steps that must

be taken in order to achieve this goal. First, at layer level,

storage systems should decouple background mechanisms from

the policies that govern them. Specifically, these mechanisms

should be agnostic of the I/O layer and exported to another

layer with extended visibility and more granular control over

I/O flows. Such a layer would expose the building blocks

to dynamically adapt and fine-tune background activities to

the overall infrastructure load. This would allow, for instance,

for HBase storage applications to decide when to perform

compactions and at which rate. PostgreSQL applications would

similarly benefit from this design, being able to dynamically

configure checkpointing tasks as intended.

Second, at infrastructure level, a policy-enabled SDS con-

troller with system-wide visibility would provide adaptable

end-to-end control over storage resources to adjust I/O flows

in a holistic fashion. Such a controller would employ control

and monitoring endpoints throughout the I/O path to collect

different metrics at runtime (e.g., throughput, latency, resource
utilization), thus allowing for continuous adaptability of back-

ground primitives and achieving sustained performance under

heterogeneous infrastructures with evolving requirements.

As opposed to current work, where most improvements

have focused rather narrowly on fine-grained, system-specific

optimizations, we argue that following an SDS-enabled design

with holistic I/O control and programmability would improve

the management of regular I/O flows and internal maintenance

work, as well as minimize performance variability and I/O

interference and ensure higher levels of QoS provisioning and

resource fairness.

ACKNOWLEDGMENTS

This work was supported by National Funds through the

Portuguese funding agency, FCT - Fundação para a Ciência e

a Tecnologia within the project UID/EEA/50014/2019.

REFERENCES

[1] G. Amvrosiadis, A. R. Butt, V. Tarasov, E. Zadok, M. Zhao et al., “Data
Storage Research Vision 2025: Report on NSF Visioning Workshop Held
May 30–June 1, 2018,” Tech. Rep., 2018.

[2] E. Lee and H. Bahn, “Caching Strategies for High-Performance Storage
Media,” ACM Transactions on Storage, vol. 10, no. 3, Aug. 2014.

[3] H. Kim, D. Shin, Y. H. Jeong, and K. H. Kim, “SHRD: Improving
Spatial Locality in Flash Storage Accesses by Sequentializing in Host
and Randomizing in Device,” in 15th USENIX Conference on File and
Storage Technologies, 2017.

[4] S. Kim, H. Kim, J. Lee, and J. Jeong, “Enlightening the I/O Path:
A Holistic Approach for Application Performance,” in 15th USENIX
Conference on File and Storage Technologies, 2017.

[5] E. Thereska, H. Ballani, G. O’Shea, T. Karagiannis, A. Rowstron,
T. Talpey, R. Black, and T. Zhu, “IOFlow: A Software-Defined Storage
Architecture,” in 24th ACM Symposium on Operating Systems Principles,
2013.

[6] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows,
T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable: A Distributed Storage
System for Structured Data,” ACM Transactions on Computer Systems,
vol. 26, no. 2, Jun. 2008.

[7] J. Gray and A. Reuter, Transaction Processing: Concepts and Techniques,
1992.

[8] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The Hadoop
Distributed File System,” in IEEE 26th Symposium on Mass Storage
Systems and Technologies, 2010.

[9] J. Mace, P. Bodik, R. Fonseca, and M. Musuvathi, “Retro: Targeted
Resource Management in Multi-tenant Distributed Systems,” in 12th
USENIX Symposium on Networked Systems Design and Implementation,
2015.

[10] H. Jo, S. hun Kim, S. Kim, J. Jeong, and J. Lee, “Request-aware
Cooperative I/O Scheduling for Scale-out Database Applications,” in 9th
USENIX Workshop on Hot Topics in Storage and File Systems, 2017.

[11] J. Li, N. K. Sharma, D. R. K. Ports, and S. D. Gribble, “Tales of the
Tail: Hardware, OS, and Application-level Sources of Tail Latency,” in
5th ACM Symposium on Cloud Computing, 2014.

[12] Z. Cao, V. Tarasov, H. Raman, D. Hildebrand, and E. Zadok, “On the
Performance Variation in Modern Storage Stacks,” in 15th USENIX
Conference on File and Storage Technologies, 2017.

[13] J. Dean and L. A. Barroso, “The Tail at Scale,” Communications of ACM,
vol. 56, no. 2, 2013.

[14] T. Harter, D. Borthakur, S. Dong, A. Aiyer, L. Tang, A. C. Arpaci-
Dusseau, and R. H. Arpaci-Dusseau, “Analysis of HDFS Under HBase:
A Facebook Messages Case Study,” in 12th USENIX Conference on File
and Storage Technologies, 2014.

[15] P. O’Neil, E. Cheng, D. Gawlick, and E. O’Neil, “The Log-Structured
Merge-tree (LSM-tree),” Acta Informatica, vol. 33, no. 4, 1996.

[16] N. Dayan and S. Idreos, “Dostoevsky: Better Space-Time Trade-Offs for
LSM-Tree Based Key-Value Stores via Adaptive Removal of Superfluous
Merging,” in 2018 International Conference on Management of Data,
2018.

[17] H. Lim, D. G. Andersen, and M. Kaminsky, “Towards Accurate and
Fast Evaluation of Multi-Stage Log-structured Designs,” in 14th USENIX
Conference on File and Storage Technologies, 2016.

[18] O. Balmau, D. Didona, R. Guerraoui, W. Zwaenepoel, H. Yuan, A. Arora,
K. Gupta, and P. Konka, “TRIAD: Creating Synergies Between Memory,
Disk and Log in Log Structured Key-Value Stores,” in 2017 USENIX
Annual Technical Conference, 2017.

[19] O. Balmau, F. Dinu, W. Zwaenepoel, K. Gupta, R. Chandhiramoorthi,
and D. Didona, “SILK: Preventing Latency Spikes in Log-Structured
Merge Key-Value Stores,” in 2019 USENIX Annual Technical Conference,
2019.

[20] A. Lakshman and P. Malik, “Cassandra: A Decentralized Structured
Storage System,” ACM SIGOPS Operating Systems Review, vol. 44,
no. 2, Apr. 2010.

[21] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking Cloud Serving Systems with YCSB,” in 1st ACM
Symposium on Cloud Computing, 2010.

[22] F. Cruz, F. Maia, M. Matos, R. Oliveira, J. Paulo, J. Pereira, and R. Vilaça,
“MET: Workload aware elasticity for NoSQL,” in 8th ACM European
Conference on Computer Systems, 2013.

[23] “Limit compaction speed,” Website, 2017, retrieved July 1, 2019.
[Online]. Available: https://issues.apache.org/jira/browse/HBASE-8329

12

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on July 01,2024 at 20:04:38 UTC from IEEE Xplore. Restrictions apply.

