TRUSTFS: An SGX-enabled Stackable File System Framework

1st Workshop on Distributed and Reliable Storage Systems (DRSS'19) Lyon, 1st October 2019

Tânia Esteves¹, Ricardo Macedo¹, Alberto Faria¹, Bernardo Portela², João Paulo¹, José Pereira¹ and Danny Harnik³

¹ INESC TEC and University of Minho, Portugal. ² INESC TEC and University of Porto, Portugal. ³ IBM Research – Haifa, Israel.

CONTEXTUALIZATION

- Exponential growth of digital information
- Need for ensuring data confidentiality
- Need for applying content-aware functionalities (for space reduction and query optimizations)
 - *E.g.*, deduplication, compression, indexing, *etc.*

For ensuring data confidentiality, we can:

For ensuring data confidentiality, we can:

• Encrypt the data before storing on a third-party storage, but...

For ensuring data confidentiality, we can:

• Encrypt the data before storing on a third-party storage, but...

Encryption **limits** the use of **content-aware** functionalities

For ensuring data confidentiality, we can:

• Encrypt the data before storing on a third-party storage, but...

Encryption **limits** the use of **content-aware** functionalities

How to ensure data confidentiality and privacy while allowing content-aware computations?

- Use of **property-preserving** schemes
 - e.g., convergent encryption for deduplication

- Use of **property-preserving** schemes
 - e.g., convergent encryption for deduplication

Weaker security guarantees. Still limited.

- Use of property-preserving schemes
 - e.g., convergent encryption for deduplication

Weaker security guarantees. Still limited.

- Use trusted hardware
 - e.g., Intel SGX

Lyon, October 1st

- Use of property-preserving schemes
 - e.g., convergent encryption for deduplication

Weaker security guarantees. Still limited.

- Use trusted hardware
 - e.g., Intel SGX

Hardware dependent. No unified framework.

- Use of **property-preserving** schemes
 - e.g., convergent encryption for deduplication

Weaker security guarantees. Still limited.

- Use trusted hardware
 - e.g., Intel SGX

Hardware dependent. No unified framework.

How can this be done without requiring a deep reimplementation of existing storage solutions?

CONTRIBUTIONS

• TRUSTFS

- An SGX-enabled stackable file system framework
- Initial prototype and preliminary evaluation
- Discussion of open issues and future directions

TRUSTFS ARCHITECTURE

TRUSTFS ARCHITECTURE

- Processing and storage layers
- Drivers with different algorithms
- SGX Proxy

Operations are intercepted by the FUSE kernel module

and redirected to the corresponding TRUSTFS userspace daemon.

Then, requests are encrypted by a privacy-preserving layer,

forwarded to a terminal layer, and sent to the server via a remote storage protocol.

At the server-side, data is stored and retrieved from another TRUSTFS stack.

Requests reach the topmost layer of the stack,

And are handled by the SGX proxy.

Finally, data is persisted in a storage medium.

TRUSTFS IMPLEMENTATION

- Integration of the FUSECOMPRESS file system as a novel TRUSTFS layer
 - Less than 230 of 5276 LoC modified
- Development of a SGX-enabled driver for LZO algorithm
 - Less than 200 LoC added

PRELIMINARY EVALUATION

- Four setups:
 - Native, Vanilla, Layered and SGX
- Two dumps:
 - 21 ISO images (22.3GiB) and 20 Linux Kernel source code releases (4.5GiB)
- Four workloads:
 - ISOs write, ISOs read, Kernels write and Kernels read
- 3 runs for each experiment

 Throughput degradation from Native setup to Vanilla setup

Throughput degradation from Native setup to Vanilla setup

- Throughput degradation from Native setup to Vanilla setup
- Similar performance for Vanilla and Layered setups

- Throughput degradation from Native setup to Vanilla setup
- Similar performance for Vanilla and Layered setups
- Throughput degradation of 10.8% (writes) and 6.5% (reads) from Layered setup to SGX setup

CONCLUSION

- **TRUSTFS**, an SGX-enabled stackable file system framework for building secure content-aware storage systems
 - Modular and programmable architecture with support for Intel SGX
- Preliminary evaluation of a compression prototype shows a reasonable performance overhead under most workloads
 - Throughput degradation from 6.5% up to 31.3%

OPEN ISSUES AND FUTURE DIRECTIONS

- Storage layout changes across layers
- Chunk splitting across layers
- Integration of existing storage solutions
- Key exchange and management

TRUSTFS: An SGX-enabled Stackable File System Framework

1st Workshop on Distributed and Reliable Storage Systems (DRSS'19) Lyon, 1st October 2019

Tânia Esteves¹, Ricardo Macedo¹, Alberto Faria¹, Bernardo Portela², João Paulo¹, José Pereira¹ and Danny Harnik³

¹ INESC TEC and University of Minho, Portugal. ² INESC TEC and University of Porto, Portugal. ³ IBM Research – Haifa, Israel.

