
TRUSTFS: An SGX-enabled Stackable File System
Framework

Tânia Esteves, Ricardo Macedo, Alberto Faria, Bernardo Portela∗, João Paulo, José Pereira and Danny Harnik†
INESC TEC & University of Minho
∗INESC TEC & University of Porto

†IBM Research - Haifa

Abstract—Data confidentiality in cloud services is commonly
ensured by encrypting information before uploading it. However,
this approach limits the use of content-aware functionalities, such
as deduplication and compression. Although this issue has been
addressed individually for some of these functionalities, no unified
framework for building secure storage systems exists that can
leverage such operations over encrypted data.

We present TRUSTFS, a programmable and modular stackable
file system framework for implementing secure content-aware
storage functionalities over hardware-assisted trusted execution
environments. This framework extends the original SAFEFS
architecture to provide the isolated execution guarantees of Intel
SGX. We demonstrate its usability by implementing an SGX-
enabled stackable file system prototype while a preliminary evalu-
ation shows that it incurs reasonable performance overhead when
compared to conventional storage systems. Finally, we highlight
open research challenges that must be further pursued in order
for TRUSTFS to be fully adequate for building production-ready
secure storage solutions.

Index Terms—Storage Systems, Software-Defined Storage, In-
tel SGX

I. INTRODUCTION

Storage systems are a fundamental component of cloud

computing solutions, being exposed as full-fledged services that

offer durable, available, and scalable storage capabilities (e.g.,
Amazon S3, Microsoft Azure). Such services enable efficient

and resilient storage solutions by resorting to the combination

of data-oriented functionalities such as caching, deduplication,

compression, replication, and encryption. However, developing,

integrating, reusing, and maintaining all these functionalities

is a non-trivial task. Software-Defined Storage, in particular

stackable storage systems, is an active research topic that

addresses such challenges with a programmable and layered

storage approach, easing the development and integration of

different storage functionalities [1], [2]. Briefly, the storage

stack is divided into multiple interoperable layers, each imple-

menting an independent functionality and following a common

API. Such stacking configuration enables a programmable and

flexible storage solution that can be dynamically configured to

fit the requirements of different applications and workloads.

On the other hand, reports of user data disclosure, gov-

ernment pressure on cloud-based companies, and hacking

vulnerabilities, make the security and privacy of sensitive

information stored at third-party cloud providers an increasingly

pressing concern [3]. This issue has triggered new privacy

directives, such as the European General Data Protection

Regulation. The common approach for achieving storage

privacy is to encrypt sensitive data at the client or company

premises before storing it remotely [4]. However, traditional

encryption schemes prevent processing over the encrypted data,

disabling critical features such as deduplication, compression,

and other content-specific functionalities. The importance in

allowing for these features has motivated the proposal of

alternative cryptographic protocols [5].

The emergence of trusted hardware platforms, such as Intel

SGX [6], suggests a novel paradigm for the development of

security-critical solutions. Specifically, these platforms enable

isolated execution environments allowing for applications

to run in isolation from external interfaces (including co-

located software, or a potentially malicious Hypervisor/OS),

and provide a mechanism for the cryptographic verification

of computed outputs. The exploration of these technologies

in the context of stackable storage solutions can allow for

developers to leverage these security and isolation properties

for implementing essential storage features while maintaining

performance and security of stored data. For instance, this in-

tegration would allow boosting the number of implementations

for trustworthy deduplication and compression schemes, which

would validate their adoption in production deployments [7].

We address this challenge by introducing TRUSTFS, a

novel storage framework that combines the modularity and

programmability of state-of-the-art stackable file systems with

the security and integrity guarantees provided by the Intel SGX

trusted hardware technology. In more detail, this framework

extends the original design of SAFEFS, a stackable file system

framework, to take advantage of the isolation guarantees

ensured by SGX-equipped storage servers, and enable black-

box secure operations to be performed over protected data.

Moreover, SGX can be integrated at different levels of the

TRUSTFS framework, enabling a fine-grained distribution on

the processing tasks of both trusted and untrusted environments.

Such an approach allows extensible configurability and flexibil-

ity, while minimizing the need to reimplement existing storage

solutions. To the best of our knowledge, this work presents

the first proposal towards the integration of trusted hardware

technologies with stackable file systems.

To demonstrate the usability of our proposal, we imple-

mented a stackable file system using TRUSTFS that provides

SGX-enabled compression. This prototype shows that the

stackable and pluggable design of TRUSTFS allows for existing

25

2019 38th International Symposium on Reliable Distributed Systems Workshops (SRDSW)

978-1-7281-4255-5/19/$31.00 ©2019 IEEE
DOI 10.1109/SRDSW49218.2019.00012

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on July 01,2024 at 20:07:45 UTC from IEEE Xplore. Restrictions apply.

FUSE-based file systems to easily be combined with the trusted

execution primitives of SGX. Preliminary results show that the

proposed prototype incurs reasonable performance overhead

under different workloads when compared to conventional

storage systems, with throughput degradation ranging from

6.5% up to 31.3%. We also highlight future research directions

that must be considered for TRUSTFS to be effectively

leveraged by both academia and industry to implement a new

generation of secure storage solutions.

The paper is structured as follows. §II presents the TRUSTFS

framework. §III describes the prototype file system imple-

mented using TRUSTFS and the preliminary results obtained.

§IV presents some of the open issues and the future directions.

§V surveys related work. §VI concludes the paper.

II. DESIGN & IMPLEMENTATION

TRUSTFS extends the SAFEFS framework to provide inte-

gration with hardware-assisted trusted execution environments

(Intel SGX). In this section, we begin by outlining SAFEFS’

architecture and then detail how TRUSTFS builds on it.

A. SAFEFS

SAFEFS [2] is an open-source framework based on FUSE

that enables the development of stackable POSIX-compliant

file systems. It targets four major goals: (1) reducing the cost

of implementing storage functionalities by resorting to self-

contained, stackable, and reusable layers; (2) providing simple

integration of existing FUSE-based file system implementations

as individual layers; (3) allowing flexible stacking configura-

tions to address the varying requirements of different storage

workloads and applications; and (4) being transparent to client

applications by exposing a POSIX file system interface.

SAFEFS’ architecture is illustrated in the Trusted Premises
part of Figure 1. Operations performed by client applications on

a SAFEFS-based file system (e.g., open, read) are intercepted

by the FUSE kernel module (Figure 1-�) and redirected to

the corresponding SAFEFS user-space daemon by the FUSE

user-space library (Figure 1-�). Operations are then handled

by a sequence of processing layers, that process file data

and/or metadata (e.g., compress, encrypt) and then forward the

corresponding requests to the next layer (Figure 1-�). Requests

are finally handed to a terminal layer, which is responsible for

persisting the required data and metadata in designated storage

back-ends, such as local storage hardware, networked storage,

or cloud-based storage services (Figure 1-�).

Layers expose an interface compatible with the FUSE library

API, improving flexibility in defining SAFEFS stacks and

promoting code reuse, in particular allowing existing FUSE-

based file systems to be integrated as layers. These stacks are

defined by the user and configured at mount time.

Many storage functionalities, such as replication or encryp-

tion, may be implemented by resorting to different algorithms

and/or schemes (e.g., full-data replication vs. erasure coding;

probabilistic vs. deterministic encryption). SAFEFS provides

the notion of drivers to further improve code reusability, accom-

modating different algorithms and schemes in a configurable

Trusted Premises Untrusted Premises

User Application

FUSE Library

Processing
FUSE

FUSE Kernel Module

K
er

ne
l

U
se

r

Processing
FUSE

FUSE
.
.
.

Storage
FUSE

Remote Storage

FUSE Library

Processing

FUSE Kernel Module

.

.

.

Storage
FUSE

TrustFS TrustFS

SGX Proxy

SGX Proxy

FUSE

FUSE

SGX Proxy

Untrusted
Env.

Trusted
Enclave

SGX Proxy

layer/driver
request

lifecycle

layer/driver
response

Fig. 1: TRUSTFS’ architecture.

and modular fashion. Briefly, each layer can implement and

load different drivers by respecting an API specific to the

layer’s implementation and purpose.
The SAFEFS project is implemented in C and provides

three built-in layers. (1) A granularity-oriented layer allows

stacking layers that operate on data at different granularities.

For instance, many cryptographic algorithms consider fixed-size

blocks, while other layers or even client applications may issue

read and write requests with variable block sizes. This layer thus

acts as a transparent middleware that promotes code reuse and

avoids the implementation of this granularity translation at each

layer. (2) A privacy-preserving layer transparently encrypts

sensitive information by resorting either to probabilistic or

deterministic encryption drivers. (3) A multi-backend layer

allows persisting and retrieving file data and metadata from

one or multiple storage back-ends, and provides drivers for

data replication and erasure coding.

B. TRUSTFS Design
TRUSTFS extends the architecture of the SAFEFS frame-

work to provide the isolated execution guarantees of Intel

SGX. Its design enables content-aware storage functionalities

to be leveraged in potentially untrusted environments. For

instance, untrusted servers where TRUSTFS is deployed receive

encrypted data from multiple remote clients over the network,

and TRUSTFS resorts to SGX isolated execution environments,

known as enclaves, to perform the required content-aware

computations. This allows for computation to be performed

over the original plaintext (e.g., compression) or even to enable

secure encrypted file sharing across multiple clients.
This paper tackles the architectural challenges of integrating

Intel SGX in SAFEFS, as well as on building new layers and

modifying existing ones to become SGX compliant. To be SGX

compliant, TRUSTFS introduces a new middleware component

— SGX proxy — that acts as an intermediary between the

untrusted execution environment and the secure enclaves.

As depicted in Figure 1, the proxy provides a transparent

mechanism that promotes code reuse of existing layers and

drivers, and allows executing content-aware operations either

at the untrusted execution environment or at a trusted SGX

enclave, according to the deployment requirements.
Since the SGX technology comes with hardware limitations

(e.g., memory constraints for the Enclave Page Cache size [6])

26

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on July 01,2024 at 20:07:45 UTC from IEEE Xplore. Restrictions apply.

and only supports a restricted set of libraries, it is important

to have a flexible design where the SGX proxy handles either

the entirety of a layer’s functionality, or a subset thereof. In

the first case, the proxy transparently redirects incoming layer

requests to an isolated SGX enclave. After completing the

necessary secure computation steps (by reusing the original

layer code, whenever possible, and deploying it in an enclave),

the proxy handles the output from the enclave and propagates

each request to the next layer. In the second case, the proxy

can be used to run the code of specific drivers (e.g., different

compression algorithms) in a secure enclave and to handle the

I/O payload of such computations. This design still promotes

code reuse and avoids unnecessarily deploying operations at the

enclaves, which may have a negative impact on the system’s

performance or functionality [8]. Moreover, the SGX proxy also

manages the enclave’s lifecycle (i.e., creation and destruction).

C. TRUSTFS Request Flow

The flow of requests for a TRUSTFS stack follows a similar

path as in the SAFEFS file system. To illustrate this, lets

consider us consider the scenario of a write operation issued

by a client application to the file system. After the initial setup

(key exchange between the client and a server-side enclave),

client write requests are encrypted by a privacy-preserving

layer (Figure 1-�), forwarded to a terminal layer (Figure 1-�),

and sent to the server via a remote storage protocol (Figure 1-

�). The untrusted server runs a server-side daemon for that

protocol (e.g., a NFS server), while data is stored and retrieved

from another TRUSTFS stack (Figure 1-�).

Requests then reach the topmost layer of the stack, for

example a compression layer (Figure 1-�). Since data is

encrypted, write requests are handled by the SGX proxy,

which redirects them to a trusted SGX enclave that decrypts,

compresses, and re-encrypts the compressed data (Figure 1-�).

The request is then passed to the subsequent untrusted layers

until the operation reaches a terminal layer, where the data is

persisted in a storage medium (Figure 1-). The request reply,

stating whether the operation was successfully executed or not,

takes the reverse path and is propagated through all the layers

back to the remote storage daemon, then to the user machine

and, finally, back to the client application.

The flow of requests is similar for data reads and metadata

operations. Read operations at the compression layer require

calling the SGX enclave to decrypt, decompress and re-encrypt

the uncompressed data that will be sent back to the client.

III. TRUSTFS IN PRACTICE

TRUSTFS extends the original SAFEFS implementation and

provides a new component (SGX proxy) that can be used

to transparently run layer and driver code in secure SGX

enclaves. Transparent request handling requires adapting the

proxy interface according to the interface provided by the

original layers and drivers. Similarly, the enclave’s interface

and code need to be defined according to the computation that

will run on the trusted environment. The enclave’s interface

is defined by using the SGX’s Enclave Definition Language,

while the actual enclave’s implementation may reuse code from

existing layers/drivers enabling the required functionalities.

To showcase and validate the applicability of the TRUSTFS

framework, we next present a prototype that enables secure

compression using the SGX enclaves. The main goal of this

use case is to show that TRUSTFS can ease the implementation

of different content-aware storage systems that leverage the

Intel SGX technology.

A. SGX-enabled Compression Layer

Compression is a space reduction technique commonly

applied in storage systems. Standard encryption nullifies the

efficacy of compression, due to the unstructured nature of the

ciphertext. However, by leveraging the isolation guarantees of

SGX enclaves, we can find redundancy in the original plaintext

without compromising data privacy of client data. The main

goal is to provide a file system instantiation where data is

encrypted at the client premises, before being stored in an

untrusted server. Simultaneously, at the server, it is desirable

to leverage secure compression for the files being stored, as

this can reduce the required storage space.

To promote reusability, we incorporated FuseCompress [9],

an existing FUSE-based implementation supporting data com-

pression, as a novel TRUSTFS layer. FuseCompress enables a

mix of online and offline compression for file blocks, while the

size of these blocks can be defined as a configuration parameter.

Blocks being written to the file system are intercepted along

the I/O path and compressed before being stored (online

compression). When a file is re-opened for writing or reading,

all the blocks of that file are decompressed, which allows

for quicker access to the data and reduces the impact in I/O

operations. Then, the file can be compressed again by resorting

to a background (offline) compression feature that can run, for

instance, upon unmounting the file system. FuseCompress was

integrated in TRUSTFS as a terminal layer, which required

defining an initialization function that exports the layer’s FUSE

API as callbacks for other layers. This required modifying less

than 230 of a total of 5276 LoC.

At the client premises, requests go through the granularity-

oriented layer, are encrypted at the privacy-preserving layer, and

forwarded, by the multi-backend layer, to a NFS client directory.

At the server-side, requests are handled by a NFS server daemon

and forwarded to a privacy-preserving layer that re-encrypts

data with a secure server key. Re-encryption requires decrypting

data with the corresponding client encryption key, which was

exchanged through the previously established secure channel

with a specific SGX enclave, and encrypting this data with a

shared secure server key. Since plaintext data is temporarily

disclosed during this operation, such must be done inside

the enclave. This approach allows having a deployment that

supports multiple clients, with independent encryption keys,

that want to write and read shared files at the storage server.

After being re-encrypted with the secure server key, blocks

are sent to the compression layer. The solution is to enable

compression and decompression over the original plaintext,

which must only be disclosed on a secure enclave environment

27

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on July 01,2024 at 20:07:45 UTC from IEEE Xplore. Restrictions apply.

when the server is untrusted. Briefly, the compression driver

decrypts each block with the server key, uses the LZO algorithm

to compress data (in chunks of 128 KiB), encrypts the resulting

data (with the same deterministic scheme and server key), and

passes the encrypted compressed data back to the layer to be

written in the local storage device. When data is being read,

the driver decrypts the compressed data, decompresses this

data and encrypts it back with the secure server key. At the

re-encryption layer, data is decrypted with the server key and

encrypted back with the encryption key of the client that wants

to read the data.

Turning this insecure compression layer into an SGX-

compliant one required adding less than 200 LoC. Also, this

deployment demonstrates that it is possible to support multiple

enclaves in the same storage stack.

B. Preliminary Evaluation

We conducted a preliminary performance evaluation to assess

the performance of TRUSTFS. Here, we describe the adopted

evaluation methodology and discuss the obtained results.

a) Evaluated deployments: As the baseline, we considered

a Native NFS-v3 deployment, with the NFS client and server

running in separate machines. Client applications perform

operations directly on the NFS client’s file system, which

is configured to perform writes asynchronously, while the NFS

server persists data in an ext4 file system residing in a solid-

state drive. Since the proposed TRUSTFS prototype relies on

FuseCompress, we also considered a deployment where the

NFS server persists data to the FuseCompress file system, in

turn backed by the ext4 file system. This Vanilla setup

allowed us to measure the overhead imposed by FuseCompress.

To gain insight into the performance cost of integrating existing

FUSE file systems as a TRUSTFS layer, we also evaluated

a Layered setup where FuseCompress is integrated into

TRUSTFS as an independent layer without contemplating any

security guarantees. Finally, we considered an SGX deploy-

ment that contemplates the SGX-enabled stackable prototype

previously described, which allows understanding the direct

impact of the security primitives employed in the prototype.

b) Workloads and collected metrics: All deployments

were evaluated using two dumps: (1) a set of 21 ISO images of

Ubuntu releases (22.3 GiB), and (2) a set of 20 Linux kernel

source code releases (4.5 GiB). We measured the throughput

achieved by the client when writing and reading the dumps’

contents to and from each deployment. We refer to these

workloads as ISOs write, ISOs read, Kernels write, and Kernels
read. For each experiment, we observed the CPU and memory

utilization of both client and server machines. We performed

a minimum of 3 runs for each combination of evaluated

deployment and workload, subsequently computing the mean

of each metric and the corresponding 95% confidence intervals.

c) Experimental environment: Experiments were con-

ducted by resorting to client nodes with one Intel Core i3-7100

CPU, clocked at 3.90 GHz, with 2 physical and 4 logical cores;

8 GiB of DDR3 RAM, clocked at 1600 MHz; and one 128 GB,

SATA-III, SK hynix SC311 SSD. Server nodes had one Intel

 0
 20
 40
 60
 80

Th
ro

ug
hp

ut
 (M

iB
/s

)

ISOs write

 0
 25
 50
 75

 100
ISOs read

 0
 0.5

 1
 1.5

 2
 2.5

Nati
ve

V
nil

la

Lay
ere

d
SGX

Kernels write

 0
 2
 4
 6
 8

Nati
ve

V
nil

la

Lay
ere

d
SGX

Kernels read

Fig. 2: Throughput results under dump workloads.

Core i3-4170 CPU, clocked at 3.70 GHz, with 2 physical and

4 logical cores; 8 GiB of DDR3 RAM, clocked at 1600 MHz;

and one 128 GB, SATA-III, Samsung MZ7LN128 SSD. Nodes

were interconnected by a switched Gigabit Ethernet network.

d) Results: The throughput achieved by the Native,

Vanilla, Layered, and SGX deployments are depicted in

Figure 2 (error bars represent the aforementioned confidence

intervals). Regarding the ISOs dump, when compared to the

Native results, all setups observed throughput degradation.

For the Vanilla setup, throughput decreased by 36,5%

and 51.2% for writes and reads respectively. The Layered
deployment exhibits similar performance. Results for the SGX
deployment report a throughput of 37.0 and 41.5 MiB/s for

write and read operations, respectively, which reflects a degra-

dation of 10.8% and 6.5% when compared to the performance

achieved by the Layered prototype. All compression setups

achieved space savings of 67.4%.

For the Kernels dump, when compared to Native, all other

setups observed throughput improvements for write operations

and degradations for read operations. For the Vanilla setup,

throughput increased by 71.9% for write operations, while

degrading by 24.6% on reads. The improvement for write

operations can be justified by the space savings achieved by

compression, namely 46.5%, which reduce the amount of data

being written to the storage medium. Note that for the ISOs
dump this improvement is not visible as the current deployment

is dealing with large files that are re-opened for writing several

times. This action triggers the decompression of data that is only

compressed again in an offline fashion. As for the Layered
setup, write operations performed similarly when compared

to Vanilla, while degrading throughput by 19.6% for read

operations. We hypothesize this to be due to external factors,

namely performance variations at the underlying file system,

operating system, and/or hardware [10]. Results for the SGX
deployment show a throughput degradation of 15.7% and 31.3%

for write and read operations, respectively, when compared to

the performance achieved by the Layered configuration.

e) Discussion: Results show that the chosen FUSE-based

compression file system (Vanilla setup) has a noticeable

28

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on July 01,2024 at 20:07:45 UTC from IEEE Xplore. Restrictions apply.

impact, in most workloads, when compared to the Native
deployment. This overhead is partly due to the additional

context-switching between kernel and userspace required by

FUSE. Such a problem has been previously addressed in the

literature, and those solutions can be applied to TRUSTFS.

Further, as data redundancy increases, write workloads perfor-

mance can benefit from space reduction techniques since less

data needs to be persisted at the storage mediums, and the

Vanilla setup may exhibit higher write throughput than the

Native one. By comparing the results for the Vanilla and

Layered setups, it is possible to conclude that the integration

of FuseCompress as a TRUSTFS layer has a small impact in

the performance of the different workloads. The results for

the proposed SGX-enabled compression prototype show that

it is possible to provide secure compression while keeping

the performance overhead between 6.5% to 31.3%, when

compared to the Layered setup that does not contemplate any

privacy guarantees. Indeed, the performance impact is more

noticeable for the Kernels workloads that deal with smaller

files. This happens because our current implementation exhibits

better performance when handling larger requests with multiple

blocks to be encrypted/decrypted. This is a future aspect to

be optimized in TRUSTFS. Finally, RAM and CPU resource

monitoring for the different workloads shows that resource

utilization is mostly unaltered, even on the SGX-enabled setup.

To summarize, experimental results indicate that TRUSTFS can

ease the implementation of SGX-enabled file systems while

incurring a small overhead for most of the evaluated workloads.

IV. OPEN ISSUES AND FUTURE DIRECTIONS

This section discusses open issues and future directions to

achieve a more practical and robust TRUSTFS framework.

A. Block Padding

The SGX-enabled prototype evaluated in this paper resorts

to a deterministic encryption scheme that preserves the original

size of the plaintext data in the resulting cyphertext. This

approach provides useful insights on the performance impact

of the TRUSTFS framework, however in a production-ready

scenario it would be desirable to resort to stronger probabilistic

cryptographic schemes that require adding an extra padding

to the resulting cyphertext, for instance, an Initialization

Vector and a Message Authentication Code. However, simply

concatenating this pad (e.g., 32 bytes) to the encrypted block

(e.g., 4096 bytes) and storing the resulting chunk (e.g., 4128

bytes) directly into the storage medium can have a deep

impact in the overall I/O performance. Namely, file system

implementations are typically optimized to process data in

chunks whose size is a power of 2 (4 KiB, 8 KiB, etc.).
Changing the chunk size to include the padding information

introduces significant complexity to the I/O path and requires

extra storage operations, resulting in an unwanted performance

penalty. An alternative approach, to be explored in the future,

would be to store this extra padding information as auxiliary

metadata that must be persisted and retrieved efficiently across

the different TRUSTFS layers.

B. Chunk Splitting

Another challenge that must be considered is that data chunks

are manipulated individually by each TRUSTFS layer, and as

such it is possible for chunks to be split across the I/O path.

For example, if the privacy-preserving layer encrypts data with

a chunk size of 128 KiB and a subsequent layer partitions the

chunk into smaller parts, the decryption at the SGX enclaves

will fail if only a subset of the original encrypted chunk is

considered. Therefore, some TRUSTFS layers will require

proper mechanisms to detect split chunks and prefetch/wait for

the remaining content.

C. Integration of Existing Storage Solutions

TRUSTFS allows the straightforward integration of existing

FUSE implementations as layers. However, one needs to

ensure that those solutions behave as expected, especially

when combined with other storage processing layers. As future

work, it would be valuable to have a testing tool for assessing

that a specific implementation follows desired functional and

performance requirements to be integrated as a TRUSTFS layer.

D. Key Exchange and Management

TRUSTFS assumes the establishment of a secure channel

between client machines and corresponding enclaves, located

at the untrusted servers. This secure channel is then used to

exchange encryption keys so that SGX enclaves are able to

decrypt client data. The implementation of this mechanism is

contemplated as future work and can leverage solutions such

as the ones presented in [11].

In the present TRUSTFS implementation, client and server

encryption keys are managed by the enclave and securely

persisted in a storage medium by using the SGX sealing

mechanism [12]. This mechanism ensures that encryption keys

are only managed by the SGX enclave and are never disclosed

to the untrusted server software. However, if the SGX hardware

fails, it becomes impossible to recover the original content of

sealed data. It would be interesting to study the trade-offs of

using sealing versus a more traditional approach for encryption

key management, such as the one proposed in [13].

E. SGX Side-channel Attacks

Another important issue to consider is that of side-channel

resistance, which has been demonstrated to break the security

of cryptographic protocols in SGX enclaves [14]. As future

work, it would be essential to support such protection, for

example, resorting to the LibSodium [15] library, a high-

assurance cryptographic library with a strict constant-time

policy, a very effective side-channel countermeasure that is

often not ensured by standard cryptographic implementations.

V. RELATED WORK

Several studies resort to Intel SGX to port, deploy, and run

unmodified applications in trusted execution environments [16],

[17]. Such systems provide confidentiality and integrity guar-

antees by isolating and protecting applications and their data

from access by unauthorized entities, such as the operating

29

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on July 01,2024 at 20:07:45 UTC from IEEE Xplore. Restrictions apply.

system and hypervisor. Another line of research focuses on

applying the SGX technology to database and data analytics

systems [18]–[20], enabling secure transactional and analytical

operations in untrusted infrastructures. Unlike previous work,

the present paper addresses stackable storage systems and their

integration with trusted hardware technologies.

The performance impact of using SGX enclaves to decrypt

data, perform different data transformation operations, and

then re-encrypt it in an end-to-end encrypted storage system,

is studied in [21]. Relying on a trusted anchor to perform

data reduction techniques over protected data has also been

previously studied. The approach of [5] relies upon a trusted

component for performing content-aware computation over

encrypted data and for handling key exchanges between users.

In [22], the authors propose an SGX-enabled framework

that system developers can use to implement FUSE-based

file systems that are deployed entirely in a single enclave.

Briefly, this work proposes a new module that intercepts

FUSE library calls and redirects these to run in an SGX

enclave. In TRUSTFS, the main goal is to provide a framework

that enables developers to specify exactly what code is to

be run in a secure enclave. This design allows developers

to implement complex systems and balance the resulting

performance, functionality, and security trade-offs. Moreover,

TRUSTFS provides a framework for easily stacking different

storage functionalities, each of which may be developed by

different projects, thus promoting code reuse and avoiding the

need to implement FUSE-based file systems from scratch.

In short, and to the best of our knowledge, there is no prior

work that relies on SGX to achieve a secure and programmable

storage stack. TRUSTFS is the first SGX-enabled stackable

file system framework that allows building, deploying, and

fine-tuning secure and generic content-aware file systems.

VI. CONCLUSION

This paper presented TRUSTFS, a stackable file system

framework that leverages hardware-assisted trusted execution

environments for building secure content-aware storage systems.

TRUSTFS builds on SAFEFS, maintaining its modularity and

programmability, and supports integration with Intel SGX. A

preliminary evaluation of a compression prototype built using

TRUSTFS shows that it incurs reasonable performance overhead

under most workloads when compared to conventional storage

systems, with throughput degradation ranging from 6.5% up

to 31.3%. We believe that TRUSTFS can be of great utility for

file system developers to both vest existing insecure storage

functionalities with trusted properties, and to develop novel

secure and flexible storage systems.

ACKNOWLEGMENTS

This work was supported by National Funds through the

Portuguese funding agency, FCT - Fundação para a Ciência

e a Tecnologia within the project UID/EEA/50014/2019,

and by FCT/MCTES through project HADES (PTDC/CCI-

INF/31698/2017).

REFERENCES

[1] E. Thereska, H. Ballani, G. O’Shea, T. Karagiannis, A. Rowstron,
T. Talpey, R. Black, and T. Zhu, “IOFlow: A Software-defined Storage
Architecture,” in 24th ACM Symposium on Operating Systems Principles,
2013.

[2] R. Pontes, D. Burihabwa, F. Maia, J. Paulo, V. Schiavoni, P. Felber,
H. Mercier, and R. Oliveira, “SafeFS: A Modular Architecture for Secure
User-space File Systems: One FUSE to Rule Them All,” in 10th ACM
International Systems and Storage Conference, 2017.

[3] C. A. Ardagna, R. Asal, E. Damiani, and Q. H. Vu, “From Security to
Assurance in the Cloud: A Survey,” ACM Computing Surveys, vol. 48,
no. 1, 2015.

[4] A. Bessani, M. Correia, B. Quaresma, F. André, and P. Sousa, “DepSky:
Dependable and Secure Storage in a Cloud-of-Clouds,” in 6th European
Conference on Computer Systems, 2011.

[5] N. Baracaldo, E. Androulaki, J. Glider, and A. Sorniotti, “Reconciling
End-to-End Confidentiality and Data Reduction In Cloud Storage,” in
6th ACM Workshop on Cloud Computing Security, 2014.

[6] V. Costan and S. Devadas, “Intel SGX Explained,” IACR Cryptology
ePrint Archive, vol. 2016, no. 86.

[7] Y. Shin, D. Koo, and J. Hur, “A Survey of Secure Data Deduplication
Schemes for Cloud Storage Systems,” ACM Computing Surveys, vol. 49,
no. 4, 2017.

[8] H. Dang and E.-C. Chang, “Privacy-Preserving Data Deduplication
on Trusted Processors,” in 10th International Conference on Cloud
Computing.

[9] M. Svoboda, A. Aagaard, and U. Hecht, “FuseCompress,” 2008,
(retrieved June, 2019). [Online]. Available: https://github.com/hexxellor/
fusecompress

[10] Z. Cao, V. Tarasov, H. P. Raman, D. Hildebrand, and E. Zadok, “On
the Performance Variation in Modern Storage Stacks,” in 15th USENIX
Conference on File and Storage Technologies , 2017.

[11] R. Pass, E. Shi, and F. Tramer, “Formal Abstractions for Attested
Execution Secure Processors,” in Annual International Conference on
the Theory and Applications of Cryptographic Techniques, 2017.

[12] I. Anati, S. Gueron, S. Johnson, and V. Scarlata, “Innovative technology
for CPU based attestation and sealing,” in 2nd International Workshop
on Hardware and Architectural support for security and privacy, vol. 13.
ACM New York, NY, USA, 2013.

[13] D. Harnik, P. Ta-Shma, and E. Tsfadia, “It Takes Two to #MeToo-
Using Enclaves to Build Autonomous Trusted Systems,” arXiv preprint
arXiv:1808.02708, 2018.

[14] W. Wang, G. Chen, X. Pan, Y. Zhang, X. Wang, V. Bindschaedler, H. Tang,
and C. A. Gunter, “Leaky cauldron on the dark land: Understanding
memory side-channel hazards in SGX,” in ACM SIGSAC Conference on
Computer and Communications Security, 2017.

[15] “LibSodium documentation,” (retrieved June, 2019). [Online]. Available:
https://libsodium.gitbook.io/doc/

[16] C. Tsai, D. E. Porter, and M. Vij, “Graphene-SGX: A Practical Library
OS for Unmodified Applications on SGX,” in USENIX Annual Technical
Conference, 2017.

[17] S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin, C. Priebe,
J. Lind, D. Muthukumaran, D. O’Keeffe, M. L. Stillwell, D. Goltzsche,
D. Eyers, R. Kapitza, P. Pietzuch, and C. Fetzer, “SCONE: Secure Linux
Containers with Intel SGX,” in 12th USENIX Symposium on Operating
Systems Design and Implementation, 2016.

[18] B. Fuhry, R. Bahmani, F. Brasser, F. Hahn, F. Kerschbaum, and A.-R.
Sadeghi, “HardIDX: Practical and Secure Index with SGX,” in IFIP
Annual Conference on Data and Applications Security and Privacy, 2017.

[19] C. Priebe, K. Vaswani, and M. Costa, “EnclaveDB: A Secure Database
using SGX,” in IEEE Symposium on Security and Privacy. IEEE, 2018.

[20] F. Schuster, M. Costa, C. Fournet, C. Gkantsidis, M. Peinado, G. Mainar-
Ruiz, and M. Russinovich, “VC3: Trustworthy Data Analytics in the
Cloud using SGX,” in IEEE Symposium on Security and Privacy, 2015.

[21] D. Harnik, E. Tsfadia, D. Chen, and R. Kat, “Securing the Storage Data
Path with SGX Enclaves,” arXiv preprint arXiv:1806.10883, 2018.

[22] D. Burihabwa, P. Felber, H. Mercier, and V. Schiavoni, “SGX-FS:
Hardening a File System in User-Space with Intel SGX,” in IEEE
International Conference on Cloud Computing Technology and Science,
2018.

30

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on July 01,2024 at 20:07:45 UTC from IEEE Xplore. Restrictions apply.

