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The exponential growth of digital information is imposing increasing scale and efficiency demands on mod-

ern storage infrastructures. As infrastructure complexity increases, so does the difficulty in ensuring quality

of service, maintainability, and resource fairness, raising unprecedented performance, scalability, and pro-

grammability challenges. Software-Defined Storage (SDS) addresses these challenges by cleanly disentangling

control and data flows, easing management, and improving control functionality of conventional storage sys-

tems. Despite its momentum in the research community, many aspects of the paradigm are still unclear, un-

defined, and unexplored, leading to misunderstandings that hamper the research and development of novel

SDS technologies. In this article, we present an in-depth study of SDS systems, providing a thorough descrip-

tion and categorization of each plane of functionality. Further, we propose a taxonomy and classification of

existing SDS solutions according to different criteria. Finally, we provide key insights about the paradigm and

discuss potential future research directions for the field.

CCS Concepts: • General and reference → Surveys and overviews; • Computer systems organization →

Distributed architectures; • Information systems → Storage architectures;

Additional Key Words and Phrases: Software-defined storage, distributed storage, storage infrastructures

ACM Reference format:

Ricardo Macedo, João Paulo, José Pereira, and Alysson Bessani. 2020. A Survey and Classification of Software-

Defined Storage Systems. ACM Comput. Surv. 53, 3, Article 48 (May 2020), 38 pages.

https://doi.org/10.1145/3385896

1 INTRODUCTION

Massive amounts of digital data served by a number of different sources are generated, processed,

and stored every day in both public and private storage infrastructures. Recent reports predict that

by 2025 the global datasphere will grow to 163 Zettabytes (ZiB), representing a tenfold increase

from the data generated in 2016 [78]. Efficient large-scale storage systems will be essential for

handling this proliferation of data, which must be persisted for future processing and backup

purposes. However, efficiently storing such a deluge of data is a complex and resource-demanding
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task that raises unprecedented performance, scalability, reliability, and programmability chal-

lenges.

First, as the complexity of infrastructures increases, so does the difficulty in ensuring end-to-

end Quality of Service (QoS), maintainability, and flexibility. Today’s data centers are vertically

designed and feature several layers along the I/O path providing compute, network, and stor-

age functionalities, including operating systems, hypervisors, caches, schedulers, file systems, and

device drivers [99]. Each of these layers includes a predetermined set of services (e.g., caching,

queueing, data placement) with strict interfaces and isolated procedures to employ over requests,

leading to a complex, limited, and coarse-grained treatment of I/O flows. Moreover, data-centric

operations such as routing, processing, and management are, in most cases, blended as a mono-

lithic block hindering the enforcement of end-to-end storage policies (e.g., bandwidth aggregation,

I/O prioritization), thus limiting the scalability and flexibility of infrastructures [96].

Second, efficiently managing system resources in multi-tenancy environments becomes pro-

gressively harder as resources are shared across multiple processes and nodes along the I/O path

(e.g., shared memory, schedulers, devices). Further, as tenants have different service requirements

and workload profiles, traditional resource management mechanisms fail to ensure performance

isolation and resource fairness due to their rigid and coarse-grained I/O management [60]. As a

result, enforcing QoS under multi-tenancy is infeasible as differentiated treatment of I/O flows,

global knowledge of system resources, and end-to-end control and coordination of the infrastruc-

ture are not ensured [62, 97, 120].

Third, storage infrastructures have become highly heterogeneous, being subject to volatile and

bursty workloads over long periods of time [19]. Additionally, infrastructures are frequently tuned

offline with monolithic configuration setups [3]. As a result, this homogeneity has led to appli-

cations running on general-purpose I/O stacks, competing for system resources in non-optimal

fashion and incapable of performing I/O differentiation and end-to-end system optimization

[26, 96].

These pitfalls are inherent to the design of traditional large-scale storage infrastructures (e.g.,

cloud computing, high-performance computing (HPC)) and reflect the absence of a true pro-

grammable I/O stack and the uncoordinated control of the distributed infrastructure [26]. Indi-

vidually fine-tuning and optimizing each layer of the I/O stack (i.e., in a non-holistic fashion) of

large-scale infrastructures increases the difficulty to scale to new levels of performance, concur-

rency, fairness, and resource capacity. Such outcomes result in lack of coordination and perfor-

mance isolation, weak programmability and customization, and waste of shared system resources.

To overcome the shortcomings of traditional storage infrastructures, the Software-Defined Stor-
age (SDS) paradigm emerged as a compelling solution to ease data and configuration management,

while improving end-to-end control functionality of conventional storage systems [99]. By de-

coupling the control and the data flows into two major components—control and data planes—it

ensures improved modularity of the storage stack, enables dynamic end-to-end policy enforce-

ment, and introduces differentiated I/O treatment under multi-tenancy. SDS inherits legacy con-

cepts from Software-Defined Networking (SDN) [50] and applies them to storage-oriented en-

vironments, bringing new insights to storage stacks, such as improved system programmability

and extensibility [75, 87], fine-grained resource orchestration [60, 66], and end-to-end QoS, main-

tainability, and flexibility [42, 99]. Furthermore, by breaking the vertical alignment of conven-

tional designs, SDS systems provide holistic orchestration of heterogeneous infrastructures, ensure

system-wide visibility of storage components, and enable straightforward enforcement of storage

objectives.

Recently, SDS has gained significant traction in the research community, leading to a wide spec-

trum of both academic and commercial proposals to address the drawbacks of traditional storage
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infrastructures. Despite this momentum, many aspects of the paradigm are still unclear, unde-

fined, and unexplored, leading to an ambiguous conceptualization and a disparate formalization

between current and forthcoming solutions. Essential aspects of SDS such as design principles

and main challenges, as well as ambiguities of the field, demand detailed clarification and stan-

dardization. There is, however, no comprehensive survey providing a complete view of the SDS

paradigm. The closest related work describes the Software-Defined Cloud paradigm and surveys

other software-defined approaches, such as networking, storage, systems, and security [38]. How-

ever, it investigates the possibility of a software-defined environment to handle the complexities

of cloud computing systems, providing only a superficial view of each paradigm, not addressing

its internals or existing limitations and open questions.

In this article, we present the first comprehensive literature survey of large-scale data center

SDS systems, explaining and clarifying fundamental aspects of the field. We provide a thorough

description of each plane of functionality, and survey and classify existing SDS technologies in

both academia and industry regarding storage infrastructure type, namely cloud computing, HPC,

and application-specific storage stacks, as well as internal control and enforcement strategies. We

define application-specific infrastructures as storage stacks built from the ground up, designed for

specialized storage and processing purposes. While some of these stacks can be seen as a subfield

of cloud infrastructures, for the purpose of this article and to provide a more granular classification

of SDS systems, we classify these in a separate category. In more detail, this article provides the

following contributions:

—Provides a definition of SDS. We present a definition of the SDS paradigm and outline the

distinctive characteristics of an SDS-enabled infrastructure.

—Describes an abstract SDS architecture and identifies its main design principles. The

work presented in this article goes beyond reviewing existing literature and categorizes

SDS planes of functionality regarding their designs. We surveyed existing work on SDS and

distilled the key design concepts for both controllers and data plane stages.

—Proposes a taxonomy and classification for SDS systems. We propose a taxonomy and

classification of existing SDS solutions in order to organize the many approaches, bringing

significant research directions into focus. Solutions are classified and analyzed regarding

storage infrastructure, control strategy, and enforcement strategy.

—Draws lessons from and outlines future directions for SDS research. We provide key

insights about this survey and investigate the open research challenges for this field.

This survey focuses on programmable and adaptable SDS systems. Namely, we do not address

the design and limitations of either specialized storage systems (e.g., file systems, block devices,

object stores) or other fields of storage research (e.g., deduplication [73], confidentiality [20], meta-

data management [94], device failures [83], non-volatile memory [45]). Autonomic computing sys-

tems are also out of the scope of this article [33]. Furthermore, even though other software-defined

approaches share similar design principles, they are out of the scope of this article, including but

not limited to networking [7, 50], operating systems [9, 74], data center [2, 80], cloud [38], key-

value stores [4, 47], flash [72, 85], security [49, 102], and Internet of Things (IoT) [10, 37].

The remainder of this article is structured as follows. Section 2 presents the fundamentals of the

SDS paradigm by outlining its distinctive characteristics and introduces a classification for SDS

systems. Section 3 surveys existing SDS systems grouped by storage infrastructure, control strat-

egy, and enforcement strategy. In Section 4, we discuss the current research focus and investigate

the open challenges and future directions of SDS systems. Section 5 presents the final remarks of

the survey.
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Fig. 1. Layered view of the SDS planes of functionality, comprehending both control and data tiers.

2 SOFTWARE-DEFINED STORAGE

SDS is an emerging storage paradigm that breaks the vertical alignment of conventional storage

infrastructures by reorganizing the I/O stack to disentangle the control and data flows into two

planes of functionality—control and data. While the storage industry defines SDS as a storage ar-

chitecture that simply separates software from vendor lock-in hardware [30, 103], existing SDS

solutions are more comprehensive than that. As such, we define an SDS-enabled system as a stor-

age architecture with four main principles.

—Storage mechanisms are decoupled from the policies that govern them. Instead of de-

signing monolithic custom-made services at each I/O layer, SDS decouples the control func-

tionality from the storage service to be employed over data.

—Storage service is moved to a programmable data plane. Services to be employed over

I/O flows are implemented over programmable structures and fine-tuned to meet user-

defined requirements.

—Control logic is moved to an external control plane. Control logic is implemented at a

logically or physically decoupled control plane and properly managed by applications built

on top.

—Storage policies are enforced over I/O flows. Service enforcement is data centric rather

than system centric, being employed over arbitrary layers and resources along the I/O path.

Unlike traditional storage solutions, which require designing and implementing individual con-

trol tasks at each I/O layer, such as coordination, metadata management, and monitoring, SDS

brings a general system abstraction where control primitives are implemented at the control plat-

form. This separation of concerns breaks the storage control into tractable pieces, offering the

possibility to program I/O resources and provide end-to-end adaptive control over large-scale in-

frastructures.

An SDS architecture comprises two planes of functionality. Figure 1 depicts a layered view of

such an architecture. The control plane comprehends the global control building blocks used for

designing system-wide control applications. It holds the intelligence of the SDS system and consists

of a logically centralized controller (Section 2.2) that shares global system visibility and centralized

control, and several control applications (Section 2.3) built on top [26, 42, 96, 99]. The data plane

(Section 2.1) is composed by several stages that employ controller-defined storage operations over

I/O flows [18, 60, 99]. Communication between components is established through specialized

interfaces. To preserve a common terminology between software-defined approaches, we adopt the

terminology from SDN, namely Northbound, Southbound, and Westbound/Eastbound interfaces [50].

In an SDS-enabled architecture, such as the one depicted in Figure 2, control applications are

the entry point of the control environment (Figure 2: CtrlApp1 and CtrlApp2) and the de facto
way of SDS users (e.g., system designers, administrators) to express different storage policies to
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Fig. 2. SDS-enabled architecture materialized on top of a general-purpose multi-tenant storage infrastruc-
ture. Compute servers are virtualized and host virtual machines interconnected to the hypervisor by virtual
devices, namely virtual NIC and virtual hard disk. Storage servers comprehend general network and storage
elements.

be enforced over the storage infrastructure. Policies are sets of rules that declare how the I/O flow

is managed, being defined at control applications, disseminated by controllers, and installed at the

data plane. For example, to ensure sustained performance, SDS users may define minimum band-

width guarantees for a particular set of tenants [99] or define request prioritization to ensure X th

percentile latency [54]. As controllers share a centralized view, applications resort to centralized

algorithms to implement the control logic, which are simpler and less error prone than designing

the corresponding decentralized versions [99]. The scope of applications (and policies enforced by

these) is broad, ranging from performance- and security-related services [59, 75, 99] to resource

and data management functionalities [60, 87, 91]. These user-defined policies are shared between

applications and controllers through a Northbound interface, which defines the instruction set of

the control tier while abstracting the distributed control environment into a centralized one.

Controllers track the status of the storage infrastructure, including data plane stages, storage

devices, and other storage-related resources, and orchestrate the overall storage services holisti-

cally. Centralized control enables an efficient enforcement of policies and simplifies storage con-

figuration [99]. Policies are handled by a planning engine that translates centralized policies into

stage-specific rules and operation logic, which are disseminated to targeted data plane stages and

synchronized with other controllers. Communication with the data plane is achieved through a

Southbound interface (illustrated in Figure 2 with gray-toned arrows), which allows controllers to

exercise direct control over data plane stages through policy dissemination and data plane mon-

itoring. Moreover, a Westbound/Eastbound interface establishes the communication between con-

trollers to ensure coordination and agreement [26, 96].

The data plane (Section 2.1) is a multi-stage component distributed along the I/O path (Figure 2:

Staдe1 · · · Staдe4) that holds fine-grained storage services dynamically adaptable to the infrastruc-

ture status. Each stage employs a distinct storage service over intercepted data flows, such as

performance management (e.g., prioritization) [54, 97], data management (e.g., compression, en-

cryption) [75, 77], and data routing (e.g., flow customization) [35, 96]. For all intercepted requests,

any matching policy will employ the respective service over filtered data and redirect to the cor-

responding data flow (e.g., Figure 2: data flow between File System↔ Staдe1 ↔ Block Device).
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The remainder of this section characterizes planes of functionality in a bottom-up fashion,

namely data plane (Section 2.1), controllers (Section 2.2), and control applications (Section 2.3).

Moreover, we introduce a taxonomy for classifying SDS systems based on the design principles

and features of both control and data planes, which is used as classification criteria for the surveyed

work in Section 3.

2.1 Data Plane

Data plane stages are multi-tiered components distributed along the I/O path that perform storage-

related operations over incoming I/O requests. Stages are the endpoint of SDS systems and abstract

complex storage services into a seamless design that allows user-defined policies to be enforced

over I/O flows. Each of these establishes a flexible enforcement point for the control plane to specify

fine-grained control instructions. As presented in Figure 2, stages can be transparently placed

between two layers of the I/O stack, acting as a middleware (Staдe1, Staдe3, and Staдe4) or within

an individual I/O layer (Staдe2). Moreover, stages comprehend I/O interfaces to handle I/O flows

and a core that encompasses the storage primitives to be enforced over such flows. To preserve I/O

stack semantics, input and output interfaces marshal and unmarshal data flows to be both enforced

at the core and correctly forwarded to the next I/O layer. For instance, SafeFS exposes a POSIX-

compliant interface to enable the transparent enforcement of policies over file systems [75]. The

stage core comprises (1) a policy store, to orchestrate enforcement rules installed by the control

plane (similar to an SDN flow table [63]); (2) an I/O filter, which matches incoming requests with

installed policies; and (3) an enforcement structure, which employs the respective storage features

over filtered data. A thorough description of this component is presented in Section 2.1.2.

Albeit overlooked in current SDS literature, the Southbound interface is the de facto component

that defines the separation of concerns in software-defined systems. This interface is the bridge

between control and data planes and establishes the operators that can be used for direct control

(e.g., policy propagation, sharing monitoring information, fine-tuning storage services). The con-

trol API exhibits to the control plane the instructions a stage understands in order to configure it to

perform local decisions (e.g., manage storage policies, fine-tune configurations). Such an API can

be represented in a variety of formats. For example, IOFlow [99] and sRoute [96] use tuples com-

prising human-friendly identifiers to control stages, while Crystal [26] resorts to a system-agnostic

domain-specific language to simplify stage administration. Further, the Southbound interface acts

as a communication middleware and defines the communication models between these two planes

of functionality (e.g., publish-subscribe, RPC, REST, RDMA-enabled channels).

Despite the SDN influence, the divergence between storage and networking areas has driven

SDS to comprehend fundamentally different design principles and system properties. First, each

field targets distinct stack components, leading to significantly different policy domains, services,

and data plane designs. Second, contrarily to an SDN data plane, whose stages are simple network-

ing devices specialized in packet forwarding [50], such as switches, routers, and middleboxes, SDS-

enabled stages hold a variety of storage services, leading to a more comprehensive and complex

design. Third, the simplicity of SDN stages eases the placement strategy when introducing new

functionalities to be enforced [50], while SDS ones demand accurate enforcement points; other-

wise, it may disrupt the SDS environment and introduce a significant performance penalty.

2.1.1 Properties. We now define the properties that characterize SDS data tiers, namely pro-

grammability, extensibility, stage placement, transparency, and policy scope. These properties are

not mutually exclusive (i.e., a data plane can comprise several of them) and are contemplated as

part of the taxonomy for classifying SDS solutions (Section 3).
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Programmability. Programmability refers to the ability of a data plane to adapt and program

existing storage services provided by the stage’s enforcement structure (e.g., stacks, queues,

storlets) to develop fine-tuned and configurable storage services [87]. In SDS data tiers, pro-

grammability is usually exploited to ensure I/O differentiation [26, 99], service isolation and

customization [42, 96, 97], and development of new storage abstractions [87]. Conventional

storage infrastructures are typically tuned with monolithic setups to handle different applications

with time-varying requirements, leading them to experience the same service level [3, 19]. SDS

programmability prevents such an end by adapting the stage core to provide differentiation of

I/O requests and ensure service isolation (further description of this process in Section 2.2.2).

Moreover, programmable storage systems can ease service development by repurposing existing

abstractions of the storage stack and exporting the configurability aspect of specialized storage

systems to a more generalized environment, i.e., expose runtime configurations (e.g., replication

factor, cache size) and existing storage subsystems of specific services (e.g., load balancing, dura-

bility, metadata management) to a more accessible environment [87]. For example, Mantle [86]

decouples cache management services of storage systems into independent policies so they can

be dynamically adapted and repurposed.

Extensibility. Extensibility refers to how easy it is for stages to support additional storage

services or customize existing ones. An extensible data plane consists of a flexible and general-

purpose design suitable for heterogeneous storage environments, and allows for a straightforward

implementation of storage services. Such a property is key for achieving a comprehensive SDS en-

vironment, capable of attending to different requirements of a variety of applications, as well as

to broaden the policy spectrum supported by the SDS system. The extensibility of SDS data tiers

strongly relies on the actual implementation of the data plane architecture. In fact, as presented

in the literature, highly extensible data plane implementations are built atop flexible and exten-
sible by design storage systems (e.g., FUSE [56], OpenStack Swift [71]). For instance, SafeFS [75]

allows developers to extend its design with new self-contained storage services (e.g., encryption,

replication, erasure coding) without requiring changing its core codebase. However, behind this

flexible and generic design lies a great deal of storage complexity that if not properly assessed

can introduce significant performance overhead. On the other hand, an inextensible data plane

typically holds a rigid implementation and hard-wired storage services, tailored for a predefined

subset of storage policies. Such a design bears a more straightforward and fine-tuned system im-

plementation, and thus comprehends a more strict policy domain only applicable to a limited set of

scenarios.

Placement. The placement of stages refers to the overall position on the I/O path on which

a stage can be deployed. It defines the control granularity of SDS systems and is a key enabler

to ensure efficient policy enforcement. Each stage is considered as an enforcement point. Fewer

enforcement points lead to a coarse-grained treatment of I/O flows, while more points allow for a

fine-grained management. Since the control plane has system-wide visibility, broadening the en-

forcement domain allows controllers to accurately determine the most suitable place to enforce a

specific storage policy [99]. An improper number and placement of stages may disrupt the con-

trol environment, and therefore introduce significant performance and scalability penalties to the

overall infrastructure.

Depending on the storage context and cluster size, stages are often deployed individually, i.e.,

presenting a single enforcement point to the SDS environment. This single-point placement is often

associated to local storage environments, being tightly coupled to a specific I/O layer or storage

component, as in SafeFS [75] (file system) and Mesnier et al. [64] (block layer). However, this

setting narrows the available enforcement strategies, which may lead to control inefficiencies and

conflicting policies (e.g., enforcing X th percentile latency under throughput-oriented services).
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Further, a similar placement pattern can be applied in distributed settings. Distributed place-

ment of stages (i.e., distributed single-points) is associated to distributed storage components of an

individual I/O layer (e.g., distributed file systems [60], object stores [26, 66]). In this scenario, each

enforcement point is a data plane stage deployed at the same I/O layer as the others. In contrast to

the prior placement strategy, this design displays more enforcement points for the control plane

to decide the enforcement strategies. It is, however, still limited to a particular subset of storage

components and may suffer similar drawbacks as the single-point approach.

Another placement alternative is multi-point data plane stages, which can be placed at several

points of the I/O path, regardless of the I/O layer [96, 97, 99]. This design provides a fine-grained

control over stages and is key to achieve end-to-end policy enforcement. However, it can introduce

significant complexity in data plane development and often requires direct implementation over

I/O layers, i.e., following a more intrusive approach.

Transparency. The transparency of a data plane reflects on how seamless its integration is with

I/O layers. A transparent stage is often placed between storage components and preserves the orig-

inal I/O flow semantics [75]. For instance, Moirai [97] provides direct control over the distributed

caching infrastructure, being applicable across different layers of the I/O path. Such an integra-

tion, however, may require substantial marshaling and unmarshaling activities, directly impacting

the latency of I/O requests. Contrarily, an intrusive stage implementation is tailored for specific

storage contexts and can achieve higher levels of performance since it does not require semantic

conversions [26, 99]. However, this may entail significant changes to the original codebase, impos-

ing major challenges in developing, deploying, and maintaining such stages, ultimately reducing

its flexibility and portability.

Scope. The policy scope of a data plane categorizes the different storage services and objec-

tives employed over I/O requests. SDS systems can be applied in different storage infrastructures

to achieve several purposes, namely performance, security, and resource and data management

optimizations. To cope with these objectives, SDS systems comprehend a large array of storage

policies categorized in three main scopes, namely performance management, data management,
and data routing. Noticeably, the support for different scopes relies on the data plane implementa-

tion and storage context. Performance management services are associated to performance-related

policies to ensure isolation and QoS provisioning [42, 96, 97, 99] (e.g., cache management, band-

width aggregation, I/O prioritization). Data management assembles services oriented to the man-

agement of data requests, such as data reduction [26, 66], security [75], and redundancy [8, 18].

Data routing primitives encompass routing mechanisms that redefine the data flow, such as I/O

path customization [96], replica placement strategies [109], and data staging [35]. Even though

mainly applied in networking contexts [50], data routing services are now contemplated as an-

other storage primitive, in order to dynamically define the path and destination of an I/O flow at

runtime [96].

As SDS systems are employed over different storage scenarios, data planes can include additional

properties (e.g., dependability, simplicity, generality) that portray other aspects of SDS [48, 99].

However, as they are not covered by the majority of systems, they are not contemplated as part

of this survey’s taxonomy. One such property is dependability, which refers to the ability of a

data plane to ensure availability and tolerate faults of the storage services implemented at stages,

regardless of employing performance management, data management, or data routing objectives

[26, 99].

2.1.2 Stage Design. We now categorize data plane stages in three main designs. Each design

respects the internal organization of a stage’s enforcement structure, regardless of being applicable

at different points of the I/O path. Figure 3 illustrates such designs, namely (a) Stack-, (b) Queue-,
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and (c) Storlet-based data plane stages. Similarly to Section 2.1.1, these designs are contemplated

as part of the taxonomy for classifying SDS data elements.

Stack-based stages. Stack-based data plane stages provide an interoperable layer design where

layers correspond to specific storage features and are stacked according to installed policies [75].

This design enables an independent and straightforward layer development, introducing a modu-

lar and programmable storage environment. Layer organization is established by the control plane

and may result in a number of stacking configurations tuned to satisfy the installed policies and

attend the I/O requirements. Figure 3(a) depicts an abstract design of a stack-based data plane

stage. It comprehends a four-layer stacking configuration, each with a specific storage service to

be employed over I/O flows, namely malware scanning, caching, compression, and encryption. The

data flow follows a pass-through layout, ensuring that all requests traverse all layers in an orderly

way, such that each layer only receives requests from the layer immediately on top and only issues

requests to the layer immediately below. SafeFS [75], for example, provides a framework for devel-

oping stackable storage services by repurposing existing FUSE-based file system implementations

to employ different storage objectives over I/O flows, such as encryption and erasure coding.

Stacking flexibility is key to efficiently reusing layers and adapting to different storage environ-

ments. However, this vertical alignment may limit the ability to enforce specific storage policies

(e.g., data routing), limiting the available policy spectrum exposed to the control plane. Current

stack-based solutions are attached to specialized I/O layers and usually deployed at lower levels

of the I/O stack, such as file systems and block devices [66, 75].

Queue-based stages. Queue-based data plane stages provide a multi-queue storage environ-

ment, where queues are organized to employ distinct storage functionalities over I/O requests [99].

Each queue is a programmable storage element that comprehends a set of rules to regulate traf-

fic differentiation and define its storage properties. Such properties govern how fast queues are

served, employ specific actions over data, and forward I/O requests to other points of the I/O path.

Examples of such properties include the use of token-buckets, priority queues, and scheduling

mechanisms (further detailed in Section 3.3). Figure 3(b) depicts the design of a queue-based data

plane stage. Incoming requests are inspected, filtered, and assigned to the corresponding queue. For

instance, IOFlow [99] provides programmable queues to employ performance and routing services

over virtual instances and storage servers, enabling end-to-end differentiation and prioritization

of I/O flows.
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The flexible design of the queuing mechanism allows for simplified orchestration, flexibility,

and modularity of data plane stages [99], although, as demonstrated by complementary research

fields [27, 29], queue structures are primarily used to serve performance-oriented policies. As such,

trading customization over a more tailored design turns the integration and extension of alterna-

tive storage services into a challenging endeavor.

Storlet-based stages. Storlet-based data plane stages abstract storage functionalities into pro-

grammable storage objects (storlets) [26, 87]. Leveraging from the principles of active storage [79]

and OpenStack Swift Storlets [71], a storlet is a piece of programming logic that can be injected into

the data plane stage to perform custom storage services over incoming I/O requests. This design

promotes a flexible and straightforward storage development and improves the modularity and

programmability of data plane stages, fostering reutilization of existing programmable objects.

Figure 3(c) depicts the abstract architecture of a storlet-based data plane stage. Stages comprehend

a set of preinstalled storlets that comply with initial storage policies. Policies and storlets are kept

up-to-date to ensure consistent actions over requests. Moreover, the data plane stage forms sev-

eral storlet-made pipelines to efficiently enforce storage services over data flows. At runtime, I/O

flows are intercepted, filtered, classified, and redirected to the respective pipeline. Crystal [26],

for example, provides a storlet-enabled data plane that allows system designers to deploy and run

customized performance and data management services over I/O requests.

The seamless development of storlets ensures a programmable, extensible, and reusable SDS

environment. However, as the policy scope increases, it becomes harder to efficiently manage the

storlets’ mechanisms at stages. Such an increase may introduce significant complexity in data plane

organization and lead to performance penalties on pipeline construction, pipeline forwarding, and

metadata and storlet management.

2.2 Control Plane — Controllers

Similarly to SDN, SDS control planes provide a logically centralized controller with system-wide

visibility that orchestrates a number of data plane instances. It shares a unified point of control,

easing both application building and control logic development. However, even though identical in

principle, the divergence between SDN and SDS research objectives may impact the entailed com-

plexity on designing and implementing production-quality SDS systems. First, the introduction of

a novel functionality to employ over I/O flows cannot be arbitrarily assigned to stages, since it may

introduce significant performance penalties and compromise the enforcement of other policies. For

instance, SDN data planes are mainly composed with simple forwarding services, while SDS data

planes may comprehend performance functionalities, which are sensitive to I/O processing along

the I/O path, but also data management ones, which entail additional computation directly im-

pacting processing and propagation time of I/O flows. Thus, controllers require performing extra

computations to ensure the efficient placement of storage features, preventing policy conflicts, and

ensuring a correct execution of the SDS environment. Second, since the domain of both services

and policies is broader than in SDN, ensuring transparent control and policy specification intro-

duces increased complexity to the design of controllers (e.g., decision making, service placement).

As depicted in Figure 1, controllers are the midtier of an SDS system and provide the building

blocks for orchestrating data plane stages according to the actions of control applications built

on top. Despite being distributed, the control plane shares the control logic through a logically

centralized controller that comprehends system-wide visibility, eases the design and development

of general-purpose control applications, provides a simpler and less error-prone development of

control algorithms, ensures an efficient distribution and enforcement of policies, and fine-tunes

SDS storage artifacts holistically (i.e., encompassing the global storage environment) [26, 35, 96, 99,

109]. Unless otherwise stated, a controller defines a logically centralized component, even though
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Fig. 4. SDS controllers’ architecture: (a) presents the organization of the internals of an SDS controller, and
(b) and (c) depict the design of SDS control plane controllers, namely Flat and Hierarchical designs.

it is physically distributed. A controller can be partitioned into three functional modules, namely a

metadata store, a system monitor, and a planning engine, as illustrated in Figure 4(a). Each of these

modules consists of a particular set of control features shared between controllers or designed

for a specific control device. Moreover, these modules are programmable and allow SDS users to

install, at runtime, custom control actions to employ over the system (e.g., control algorithms for

accurate policy enforcement, collection of monitoring metrics).

The metadata store holds the essential metadata of the storage environment and ensures a syn-

chronized view of the storage infrastructure. As depicted in Figure 4(a), different types of meta-

data are stored in separate instances, namely topology, policies, or metrics. The topology instance

maintains a stage-level topology graph that comprehends the distribution of SDS stages, along the

assigned storage services, and information about the resources of each node in which a stage is

deployed (e.g., available storage space, CPU usage). For instance, sRoute’s [96] controller main-

tains an up-to-date topology graph with the capacity of physical resources and shares it with

control applications to define accurate storage policies. The policies instance holds storage policies

submitted by applications, as well as the ones installed at data plane stages. The metrics instance

persists digested monitoring metrics and statistics of both control and data flows, which are used

to adapt data plane stages to meet applications’ requirements. Further, to ensure a dependable SDS

environment, metadata is usually synchronized among controllers [96, 99].

The system monitor collects, aggregates, and transforms unstructured storage metrics and sta-

tistics into general and valuable monitoring data [26, 32, 109]. It captures relevant properties of the

physical storage environment (e.g., device and network performance, available storage space, IOPS,

bandwidth usage) from SDS controllers and data plane tiers, and collects samples of I/O workloads,

in order to trace an up-to-date profile of the storage stack. Such metrics are then analyzed and cor-

related, bringing significant insights about the system status that allow the controller to optimize

the infrastructure by (re)configuring SDS stages and assist other modules in policy enforcement

and feature placement activities. For example, Mirador [109] collects device and network load and

traces workload profiles to build an accurate model of the infrastructure, in order to assist in flow

customization and data placement enforcement. Furthermore, the system monitor can also exercise

automation operations without input of applications, ranging from simple management activities
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such as increasing or decreasing the number of controllers to more complex tasks (e.g., fine-tuning

storage policies, reconfiguring data plane stages) [26].

The planning engine implements the control logic responsible for policy translation, policy en-

forcement, and data plane configuration. Policies submitted by control applications are parsed,

validated, and translated into stage-specific rules that will be installed at the respective data plane

stage. Policy enforcement is achieved through different control algorithms and strategies that spec-

ify how the data plane handles I/O flows and define the most suitable place for policies to be

enforced [99]. Examples of such control algorithms and control strategies include proportional

sharing, isolation and priority, feedback control, and performance modeling (further detail in Sec-

tion 3.2). Both translation and enforcement operations may lead the controller to interact with a

single data plane stage (e.g., to install a particular rule) or a number of stages to perform distributed

enforcement, such as bandwidth aggregation and I/O prioritization [97, 99].

To provide a seamless integration with the remaining SDS layers, the controller connects to a

northbound and a southbound interface to interact with control applications and data plane stages,

respectively. Similar to other software-defined approaches, SDS architectures comprehend a net-

work of controllers connected through a westbound/eastbound interface, as illustrated in Figures 1

and 4(a). This interface defines the instruction set and communication protocols between con-

trollers being used to exchange data, synchronization, and fault tolerance; monitor; and, depending

on the control plane architecture, assign control tasks to other controllers (further description of

this property is presented in Section 2.2.2). Further, this interface aims at achieving interoperabil-

ity between different controllers [50]; however, despite its clear position in the SDS environment,

current literature does not explore nor provide details about such an interface.

2.2.1 Properties. Similarly to other software-defined approaches, designing and implementing

production-quality SDS systems requires solving important challenges at the control plane [48].

We now define the properties that characterize SDS controllers, namely scalability, dependability,

and adaptability, which are also contemplated as part of the taxonomy for classifying SDS systems

(Section 3).

Scalability. Scalability refers to the ability of a control plane to efficiently orchestrate and mon-

itor a number of data plane stages. Similarly to SDN, the control plane can be either physically cen-

tralized or distributed [7]. A physically centralized control plane consists of a single SDS controller

that orchestrates the overall storage infrastructure, which is an attractive design choice in terms of

simplicity [69, 92, 101]. However, physical control centralization imposes severe scalability, perfor-

mance, and dependability requirements that are likely to exhaust and saturate underlying system

resources, largely dictating the end performance of the storage environment. As the amount of

stages increases, so does the control traffic destined toward the centralized controller, bounding

the system performance to the processing power of this single control unit. Hence, despite the

obvious limitations in scale and reliability, such a design may be only suitable to orchestrate small

to medium storage infrastructures [50].

Production-grade SDS controllers must be designed to attend to the scalability, performance,

and dependability requirements of today’s production storage systems, meaning that any limi-

tations should be inherent to the storage infrastructure and not from the actual SDS implemen-

tation. Thus, physically distributed controllers can be scaled up to attend to such requirements.

While sharing a logically centralized service, multiple interconnected SDS controllers orchestrate

the storage infrastructure by sharing control responsibility, and thus alleviating overall control

load. Leveraging from existing classifications [7], distributed SDS controllers can follow a flat or

a hierarchical distribution (Section 2.2.2). Flat designs (Figure 4(b)) imply horizontal control parti-

tioning to provide a replicated control service, forming a reliable, fault-tolerant, highly available
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cluster of controllers [26, 99, 109]. On the other hand, hierarchy-based designs (Figure 4(c)) imply

the vertical control partitioning to provide a scalable and highly performing SDS control plane

[42, 96].

Dependability. Dependability refers to the ability of a control plane to ensure sustained avail-

ability, resiliency, and fault tolerance of the control service [6]. Physically centralized controllers

represent a single point of failure (SPOF), leading to the unavailability of the control service upon

a failure. As a result, the SDS ecosystem becomes unsupervised, incapable of regulating incoming

storage policies and orchestrating the data plane tier. The system should handle failures gracefully,

avoiding SPOF and enabling fault tolerance mechanisms. Thus, similarly to SDN [11, 16, 48], phys-

ically distributed SDS solutions provide coordination facilities for detecting and recovering from

control instance failures [26, 96, 109]. In this model, controllers are added to the system to form

a replicated, fault-tolerant, and highly available SDS environment. Moreover, existing distributed

controllers consider the different tradeoffs of performance, scalability, and state consistency and

provide distinct mechanisms to meet fault tolerance and reliability requirements. For instance, con-

trollers may assume a clustered format to achieve fault tolerance through active or passive repli-

cation strategies by resorting to Replicated State Machines built with Paxos-like techniques [51,

70], or simply implement a primary backup approach where one main controller orchestrates all

data plane elements while remaining control instances are used for replication of the control ser-

vice [15].

While some solutions comprehend a strong consistency model to ensure correctness and ro-

bustness of the control service, others resort to relaxed models where each controller is assigned

to a subset of the storage domain and holds a different view of the infrastructure. Regarding con-

trol distribution, flat control planes are designed to ensure sustained resilience and availability [26,

99], while hierarchical control planes focus on the scalability challenges of the SDS environment

[35, 96].

Depending on the storage context, the dependability offered by the control plane can be coupled

to a specific I/O layer. Specifically, as some SDS systems are directly implemented over existing

storage systems, such as Ceph (e.g., Mantle [86], SuperCell [101]) and OpenStack (e.g., Crystal [26]),

the control plane’s dependability is bounded by the dependability of the respective storage system.

Adaptability. Adaptability refers to the ability of a control plane to respond, adapt, and fine-

tune enforcement decisions under time-varying requirements of the storage infrastructure. The

high demand for virtualized services has driven data centers to become extremely heterogeneous,

leading storage components and data plane stages to experience volatile workloads [3, 19, 99].

Moreover, designing heterogeneity-oblivious SDS systems with monolithic and homogeneous con-

figurations can severely impact the storage ecosystem, hindering the ability to accurately enforce

policies [26].

Therefore, SDS controllers must comprehend a self-adaptive design, capable of dynamically

adjusting their storage artifacts (e.g., policy values, data plane stage configurations) to the sur-

rounding environment, in order to deliver responsive and accurate enforcement decisions [26].

As enforcement strategies directly impact I/O flows, employing self-adaptive and autonomous

mechanisms over SDS controllers brings a more accurate and dynamic enforcement service. More-

over, due to the fast changing requirements of the storage environment, data plane configurations

rapidly become subpar, and thus, automated optimizations of data plane resources are key to en-

sure efficient policy enforcement and resource usage.

Current strategies to provide adaptable SDS control include control-theoretic mechanisms, such

as feedback controllers that orchestrate system state based on continuous monitoring and data plane

tuning [43, 59, 99], and performance modeling, such as heuristics [108], linear programming [66,
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120], and machine learning [42] techniques (further detail on these strategies is presented in Sec-

tion 3.2).

2.2.2 Controller Distribution. SDS literature classifies the distribution of controllers as logically

centralized, despite being physically distributed for the obvious reasons of scale and resilience [96,

99]. We now categorize distributed control planes regarding controller distribution. Figure 4 illus-

trates such designs, namely (b) Flat and (c) Hierarchical controllers. Similarly to the properties

presented in Section 2.2.1, both designs are contemplated as part of the taxonomy for classifying

SDS control elements.

Flat. Flat control planes provide a horizontally partitioned control environment, where a set

of interconnected controllers act as a coordinated group to ensure a reliable and highly available

control service while preserving logical control centralization. Depending on the control plane’s

implementation, controllers may hold different organizations, being designed to account for the

different tradeoffs of performance and resiliency. For instance, some implementations may provide

a cluster-like distribution, where a single controller orchestrates the overall storage domain, while

others are used as backups that can take over in case the primary fails. In this scenario, the cen-

tralized controller handles all stage-related events (e.g., collect reports and metrics), disseminates

policies, generates comprehensive enforcement plans, and enforces policies. Moreover, the control

plane provides the coordination facilities to ensure fault tolerance and strong consistency by rely-

ing on Paxos-based mechanisms [96, 109] or simple primary backup strategies [15]. Mirador [109]

follows such an approach by resorting to a coordination service to ensure a highly available control

environment [34]. This design allows distributed controllers to have strong consistency proper-

ties, ensure high availability of the control service, and ease control responsibility. However, since

control remains centralized, this cluster-based distribution falls short when it comes to scalability,

limiting its applicability to small to medium-sized storage infrastructures [99].

Other solutions, as depicted in Figure 4(b), may provide a network-like flat control platform,

where each controller is responsible for a subset of the data plane elements [26, 48]. Namely,

each controller orchestrates a different part of the infrastructure, synchronizing its state with the

remaining controllers with strong or eventual consistency mechanisms. Upon the failure of a con-

troller, another may assume its responsibilities until it becomes available. For instance, Crystal [26]

holds a set of autonomous controllers, each running a separate control algorithm to enforce differ-

ent points of the storage stack. This network-like design ensures an efficient and high-performance

control service and provides a flexible consistency model that allows the SDS system to scale to

larger environments than cluster-based approaches. However, this control model hardens the con-

trol plane’s ability to share a logical centralized setup and up-to-date visibility to control applica-

tions, hindering its applicability to large-scale production storage infrastructures. Further, with

the emergence of novel computing paradigms composed by thousands of nodes, such as server-

less cloud computing [40] and Exascale computing [22], this design may have severe scalability

and performance constraints.

Hierarchical. The constant dissemination of stage-related events, such as control enforce-

ment and metrics collection, hinders the scalability of the control plane [42, 96]. To limit the

load of the centralized controller, both control and management flows must be handled closer

to data plane resources and minimized as much as possible without compromising system cor-

rectness. Thus, similarly to distributed SDN controllers [36, 113, 114], hierarchical control plane

distributions address such a problem by organizing SDS controllers in a hierarchical disposi-

tion [35, 42, 96]. Controllers are hierarchically ranked and grouped by control levels, each of

them with respect to a cumulative set of control services. This approach distributes the control
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responsibility to alleviate the load imposed over centralized services, enabling a more scalable

SDS control environment.

As depicted in Figure 4(c), the control plane is vertically partitioned and distinguishes its ele-

ments between core controllers and subcontrollers. Core controllers are placed at the top tier of the

hierarchy and comprehend overall control power and system-wide visibility. While maintaining a

synchronized state of the SDS environment, core controllers manage control applications and or-

chestrate both data plane and subcontroller elements. Moreover, core controllers share part of their

responsibilities with underlying control tiers, propagating the control fragments hierarchically.

Subcontrollers form the lower tiers of the control hierarchy, placed closer to data sources, and com-

prehend a subset of control services. Each of these controllers manages a segment of the data plane,

as well as the control activities that do not require global knowledge or impact the overall state of

the control environment. For example, Clarisse [35] implements a hierarchical control plane over

HPC infrastructures that groups control activity through global, application, and node controllers.

Since core controllers hold global visibility, they perform accurate and holistic control decisions

over the SDS environment. However, maintaining a consistent view is costly, causing significant

performance overhead even when performing simple and local decisions [35, 96]. On the other

hand, subcontrollers are tailored for control-specific operations, providing faster and fine-grained

local decisions over SDS stages. In case a subcontroller cannot perform certain control actions over

its elements, it passes such responsibility to higher-ranking controllers.

Communication between control instances is achieved through the westbound/eastbound inter-
face and is used for establishing the control power and policy dissemination, periodic state prop-

agation for synchronization, and health-monitoring events.

2.3 Control Plane — Control Applications

Control applications are the entry point of the SDS environment and the de facto way of expressing

the control directives of I/O flows. Applications exercise direct control over controllers by defining

the control logic through policies and control algorithms, which are further translated into fine-

grained stage-specific rules to be employed over I/O requests. Examples of control algorithms

include proportional sharing, prioritization and isolation, and shares and reservations, each of

which is further detailed in Section 3.2. Similar to other software-defined approaches [38, 50],

control applications introduce a specification abstraction into the SDS environment, to express the

desired storage behavior without being responsible for implementing the behavior itself. Moreover,

the logical centralization of control services allows control applications to leverage from the same

control base, leading to an accurate, consistent, and efficient policy creation.

Existing control applications are designed for a variety of storage contexts and cover a wide

array of functionalities, including performance, resource and data management, security, and other
storage objectives. Performance objectives aim at enforcing performance guarantees (e.g., through-

put and latency SLOs [54]), prioritization (e.g., bandwidth allocation according to applications’

priority [99]), and performance control (e.g., I/O isolation). On the management side, resource-

centric objectives enforce fairness between applications accessing shared storage systems, as well

as caching and device management policies (e.g., caching schemes [97], storage quotas [18]) and

I/O flow customization (e.g., modify the I/O endpoints of a layer [96]). Data-centric objectives, on

the other hand, enforce objectives directly applicable over data and metadata such as data redun-

dancy, data reduction, data placement, and (meta)data organization [88]. Security-based objectives

enforce encryption and malware scanning rules to ensure privacy and confidentiality of sensitive

data. Other storage objectives such as energy efficiency and elasticity control seek to provide addi-

tional properties to storage systems. Table 1 classifies existing SDS control applications regarding

storage objectives, organized by storage infrastructure.
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Table 1. Classification of SDS Control Applications Regarding Storage Objectives

Cloud HPC Application-Specific

Performance guarantees [54, 92, 96, 97, 99, 117, 120] [42] [26, 43, 60, 64, 105]

Performance Prioritization [54, 97–99, 108, 117, 119, 120] [35, 42] [60, 64, 105]

Performance control [59, 66, 91, 97–99, 119] [42] [26, 60, 87, 101, 105]

Resource

Management

Fairness [92] [60, 64]

Cache management [96, 97] [26, 86]

Device management [66] [18, 101]

Flow customization [59, 96, 108] [35] [8, 109]

Data redundancy [77] [8, 18, 75]

Data Data reduction [66, 77] [18, 26]

Management Data placement [66, 69, 77, 96] [35] [8, 86, 87, 101, 109]

(Meta)Data organization [69, 77] [8, 86, 87]

Security Encryption [77] [75]

Malware scanning [99]

Other Storage Objectives [66, 69, 77] [35] [8, 75, 87]

Finally, a Northbound interface connects control applications and controllers by abstracting the

distributed control environment into a language-specific communication interface, hiding unnec-

essary infrastructure details while allowing straightforward application building and policy spec-

ification. Such a design fosters the integration and reutilization of different control applications

between SDS technologies, enabling an interoperable control design. However, current work on

SDS lacks a standard Northbound interface, which limits the ability to combine different control

applications throughout distinct storage contexts and SDS technologies.

3 SURVEY OF SOFTWARE-DEFINED STORAGE SYSTEMS

This section presents an overview of existing SDS systems regarding storage infrastructure (Sec-

tion 3.1), control strategy (Section 3.2), and enforcement strategy (Section 3.3). Section 3.4 discusses

key differences between SDS systems. Systems are classified according to the taxonomies described

in Section 2.1 and Section 2.2.

3.1 Survey by Infrastructure

Storage infrastructures have different requirements and restrictions, and thus, the design and com-

bination of SDS properties may vary significantly with the storage type being targeted. To provide

a comprehensive survey of SDS systems, we describe them in a twofold way. Table 2 classifies SDS

systems according to the taxonomy described in Section 2 while grouping them by storage in-

frastructure, namely cloud, HPC, and application-specific storage stacks. This table highlights the

design space of each infrastructure and depicts current trends and unexplored aspects of the par-

adigm that require further investigation. Then, the textual description presented in each section

(Sections 3.1.1 through Section 3.1.3) draws focus on the environment and context where each sys-

tem is applied, as well as the enforced storage objectives and other aspects that differentiate these

solutions. The classification considers systems from both academia and industry.1 Commercial

solutions whose specification is not publicly disclosed are not considered. Systems that follow the

1Industrial SDS systems are marked with an i in the classification table.
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Table 2. Classification of Software-Defined Storage Systems Regarding Storage Infrastructure
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IOFlow i [99] F �� � �� Q �� �� MP � PR ↑ ↓
Moirai [97] F �� � �� S �� �� MP � P ↓
sRoute [96] H � � �� Q � �� MP � PR ↑↔↓
JoiNS [108] H � -·- �� Q �� � DSP � PR ↔ ↓

Façade� [59], AVATAR� [117] C � � �� Q �� � SP � P ↓
Pisces� [92], Libra� [91] C � � �� Q � � DSP � P ↓

PM� [120], WC� [119] F �� � � Q � � DSP � P ↓
PSLO� [54] C � � � Q �� � DSP � P ↑ ↓
Wisp� [98] D � -·- �� Q �� � DSP � P ↔ ↓

Wiera-Tiera� [69, 77] C � � �� St � � DSP � PDR ↓
flexStore [66] F �� � �� S �� � DSP �� PD ↑ ↓
Clarisse [35] H � �� � Q �� � DSP � PR ↑↔↓

SIREN [42] H � �� �� Q �� � MP � P ↔ ↓
Retro [60] F �� � �� Q �� �� MP � P ↑ ↓

Cake� [105] C � � �� Q �� � MP � P ↑ ↓
Crystal [26] F �� � �� St � � DSP �� PD ↑↔↓

Coho Data i [18, 109] F �� � �� S �� � DSP � PDR ↑ ↓
Mantle [86] C � � �� St � � DSP � P ↑ ↓

SuperCell [101] C � � �� St � � DSP � PD ↓
Malacology [87] — — — — St � �� DSP � PDR ↓

SafeFS [75] — — — — S �� � SP � PD ↓
Triage� [43] F �� � � Q � � DSP � P ↓

PADS � [8] — � � � St � � DSP � PR ↑ ↓
Mesnier et al.� [64] — � � � — �� �� SP � P ↓

Properties Distribution Design Placement Scope Interfaces� Absent C-Centralized S-Stack SP-Single point P-Performance ↑ Northbound�� Limited F-Flat Q-Queue DSP-Distributed SP D-Data ↔West/Eastbound�Manifested H-Hierarchical St-Storlet MP-Multi-point R-Routing ↓ Southbound

-·- Unspecified D-Decentralized

— Not Applicable

SDS design principles and storage functionalities described in Section 2, targeting at least one of

the planes of functionality, are contemplated in this classification.2

3.1.1 Cloud Infrastructures. Cloud computing infrastructures offer enterprise-grade comput-

ing and storage resources as public utilities so customers can deploy and execute general-purpose

services in a flexible pay-as-you-go model. Cloud premises consist of hundreds to thousands

2Systems not originally defined as SDS but that follow the same design principles are marked with � in the classification

table.
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of compute and storage servers. Compute servers are virtualized and abstract multiple physical

servers into an infinite pool of resources exposed through virtual machines (VMs) or containers.

Resources are shared between tenants and mediated by hypervisors. Storage servers accommodate

heterogeneous storage systems and devices with distinct levels of granularity and performance.

These servers persist all data and are exposed to VMs as virtual devices. Compute and storage

servers are connected through high-speed network links that carry all infrastructure traffic. How-

ever, behind this virtualized environment lie complex and predefined I/O stacks, which result in

increased end-to-end complexity and difficulty in enforcing storage requirements and end-to-end

control over storage resources [28, 99]. While several systems have been proposed to partially ad-

dress this problem (e.g., QoS provisioning and scheduling [13, 27–29, 112]), none have considered

end-to-end enforcement nor holistic orchestration of infrastructure resources. To address such

shortcomings, SDS-enabled systems have moved toward cloud infrastructures.

The term Software-Defined Storage was first introduced by IOFlow [99]. Specifically, IOFlow

enables end-to-end policy enforcement under multi-tenant architectures. Queue-based stages em-

ploy performance and routing primitives from VMs to shared storage, allowing efficient perfor-

mance isolation, differentiated I/O treatment, and end-to-end performance control. A reactive flat-

based control plane discovers stages and dynamically configures their storage services to attend

the manifold objectives of applications built on top (e.g., bandwidth aggregation, prioritization,

throughput, and latency objectives). While originally designed to enforce policies over storage-

related layers, it was later extended to support caching and networking [96, 97]. Moirai [97] extends

IOFlow’s design to exercise direct and coordinated control over the distributed caching infrastruc-

ture to improve resource utilization and achieve performance isolation and QoS guarantees. Stages

are deployed as stackable and programmable caching instances to employ performance services

over incoming I/O requests, such as workload aggregation and maximization of cache hit ratios.

At the control plane, a logically centralized controller built on top of IOFlow’s traffic classification

mechanism orchestrates stages in holistic fashion and maintains (cache) consistency and coher-

ence across the I/O stack. Further, it continuously monitors the infrastructure and maintains key

performance metrics of each workload running on the system (e.g., throughput, read-write pro-

portion, hit ratio curves).

To override the rigid and predefined I/O path of cloud infrastructures, sRoute [96] goes toward

combining storage and networking primitives. It extends IOFlow’s design to employ routing ser-

vices throughout the I/O path, turning the storage stack more programmable and dynamic. The

data plane consists of programmable switches (sSwitch stages), which provide flow regulation and

customization, and queue-based stages, which implement performance management and I/O dif-

ferentiation at hypervisors. Such a design allows I/O flows to be redirected to any point of the

I/O stack (e.g., controller, sSwitch-enabled stages). The control plane holds a hierarchical distri-

bution made of a centralized controller and several control delegates, which are restricted control

daemons installed at sSwitches for control plane efficiency. Each of these delegates performs deci-

sions locally, alleviating the load of the centralized component, and thus providing a more scalable

environment. Similarly, JoiNS [108] orchestrates storage and network primitives over networked

storage premises. While sharing similar control principles, JoiNS leverages from existing SDN

data planes [63] and programmable switches to enforce routing primitives over the storage infras-

tructure, while storage stages implement predetermined performance features over block device

drivers.

While IOFlow-enabled systems are designed to achieve end-to-end optimization in cloud stor-

age, several works address specific problems and layers of the I/O stack in an SDS fashion.

Façade [59] and AVATAR [117] propose a virtualization layer that seats between clients and the

storage utility of shared storage systems and enforces throughput and latency objectives in the
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presence of bursty and volatile workloads. Even though not physically decoupled, Façade provides

a centralized controller that employs a non-linear feedback loop to allocate storage shares for each

workload and adjust data stages according to targeted workload latencies, and a queue-based data

plane that governs the queue depth of a storage utility. On the other hand, AVATAR proposes a

two-level scheduling framework that enforces 95th-percentile latency objectives. At a high level, a

centralized controller orchestrates per-workload FIFO queues and regulates workflows to achieve

isolation, while at a lower level, a queue-based data plane rate limits requests before dispatching

them to the storage utility. At multi-tenant cloud environments, Pisces [92] and Libra [91] pro-

vide system-wide performance isolation and fair resource allocation. In both systems, control and

data are not physically decoupled. Specifically, in Pisces, a centralized controller provides per-

tenant weighted fair shares to enforce throughput objectives, while queue-based stages schedule

per-tenant rules over network resources of storage servers. On the other hand, while sharing the

same design primitives as Pisces, Libra’s stages enforce per-tenant app-request reservations over

low-latency SSD drives.

Despite providing isolation and fairness over network and storage resources, previous systems

focus on sharing storage bandwidth, which is simpler to control than tail latency, as bandwidth

is an average over time not affected by the I/O path’s cumulative interactions. Moreover, single

resource enforcement either over storage [59, 91, 117] or network [92] limits the ability to en-

force end-to-end storage policies. This led to the design of multi-resource SDS systems [119, 120].

PriorityMeister (PM) [120] combines prioritization and rate limiting over network and storage

resources to meet tail latency at the 99.9th and 99.99th percentiles. A proactive flat-based con-

troller automatically orchestrates the data plane under varying degrees of workload burstiness,

while queue-based stages deployed over storage and network devices provide per-workload la-

tency differentiation. Each stage consists of multiple rate limiting queues that, while improving

burstiness, introduce increased computation time and number of required computing servers. To

address this, WorkloadCompactor (WC) [119] extends the design of PM to consolidate multiple

workloads onto a storage server. WC’s controller automatically selects rate limiting and priority

profiles, enforcing them over storage and the network to minimize the number of instances that

cloud providers use to serve all workloads. While enforcing high-latency percentile objectives, PM

and WC cannot simultaneously serve throughput-based services. As such, PSLO [54] provides an

efficient storage environment that simultaneously enforces tail latency and throughput objectives

over consolidated VMs under shared storage infrastructures. Deployed at the hypervisor level,

PSLO holds a centralized controller and queue-based stages that employ an integral feedback con-

trol loop combined with linear programming models to govern the arrival rate of I/O requests in

a per-VM basis.

Multi-tenant systems composed by hundreds of small partitioned services (e.g., Service-Oriented

Architectures (SOAs)) are often used on cloud premises to build large-scale web applications [98].

These systems consist of fine-grained and loosely coupled services, each running on a physical

or virtual machine. However, their limited visibility hinders the ability to provide efficient storage

enforcement. Wisp [98] proposes a distributed framework for building efficient and programmable

SOAs that adapt storage resources under multi-tenancy. It provides a fully decentralized design,

where each SOA accommodates an SDS tuple made of a controller and data plane stages. Each

controller gathers local information and propagates it to other peers to execute distributed control

algorithms, while queue stages enforce local performance services over SOA resources.

Cloud providers offer a wide array of storage services with tradeoffs in performance, cost, and

durability, leading applications to opt for simplicity instead of resorting to different services with

conflicting properties. The Wiera-Tiera SDS system provides a geo-distributed cloud environment

that facilitates the use and specification of multi-tiered storage across data centers. At the data
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plane, Tiera [77] provides a programmable storlet-based middleware that encapsulates and re-

purposes existing services into an optimized interface that can be glued to comply with data man-

agement and routing policies (e.g., encryption, compression, data placement). At the control plane,

Wiera [69] provides a centralized controller that enforces global storage policies across multitiered

data centers. It allows the combination of storage features available at different tiers of the cloud

storage hierarchy, enabling the creation of new services via composition.

Storage features besides QoS provisioning and performance isolation can be also explored in an

SDS fashion. For instance, flexStore provides a framework for dynamically adapting a data center

to cope with QoS and energy consumption objectives. At the data plane, stack-based stages are

employed over storage systems (e.g., object stores) and hypervisors. System-level stages adjust the

data layout of storage devices and collect performance metrics to enforce energy-related policies

(e.g., reduce number of storage devices), while hypervisor-level stages employ performance and

data management services, such as deduplication and caching management. On the control side,

a flat-based controller that leverages from linear programming models enforces QoS and energy-

related policies under multi-tenancy by managing the life cycle of dedicated storage volumes and

allocating them to VMs.

Cloud-based SDS has become an active research topic for improving overall performance and

resource efficiency of cloud storage infrastructures. Enterprise-grade systems such as VMware

Cloud [103] and Microsoft Windows Server [65] have been paving the way of the paradigm in

industry, fostering its adoption at a global scale. Moreover, while several storage subsystems have

been proposed to address storage-related resources of cloud premises, such as proportional shar-

ing [27, 29, 44] and I/O scheduling [13, 28, 57, 106, 112], these can now be repurposed as control

algorithms or applications to be used in existing SDS systems.

3.1.2 High-Performance Computing Infrastructures. HPC infrastructures are composed by thou-

sands of nodes capable of generating hundreds of PFLOPS (1015 floating-point operations per sec-

ond) at peak performance [100]. Indeed, supercomputers are the cornerstone of scientific comput-

ing and the de facto premises for running compute-intensive applications. Modern infrastructures

are composed by compute and storage nodes. Compute nodes perform computational-related tasks

through manycore processors that deliver massive parallelism and vectorization. Storage nodes

persist applications’ data in a shared Petabyte-scale parallel file system (e.g., Lustre [84], GPFS [82])

that offers high-performance storage and archival access on top of hundreds of storage drives.

Communication across nodes is made through specialized high-performance interconnects. Fur-

thermore, many of the current Top500 supercomputers comprehend a third group of nodes, namely

I/O forwarding nodes (or I/O nodes), that act as a middleware between compute and storage in-

stances and are responsible for receiving compute nodes’ requests and forwarding them to storage

ones [14, 100]. I/O nodes hold the intermediate results of applications, either in memory or high-

speed SSDs, and enable several optimizations over I/O flows (e.g., request ordering, aggregation,

data staging).

The long and complex I/O path of HPC infrastructures makes performance isolation, end-to-end

control of I/O flows, and I/O optimizations increasingly challenging [111]. The variety of access

patterns exhibited by applications has led HPC clusters to observe high levels of I/O interference

and performance degradation, inhibiting their ability to achieve predictable and controlled I/O

performance [58, 115]. While several efforts were made to prevent I/O contention and perfor-

mance degradation (e.g., QoS provisioning [110, 118], job scheduling optimization [39, 95]), none

have considered the path of end-to-end enforcement of storage policies nor system-wide flow op-

timizations. To this end, SDS systems have been recently introduced to HPC environments.
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Clarisse [35] provides the building blocks for designing coordinated system-wide cross-layer

mechanisms, such as parallel I/O scheduling, load balancing, and elastic collective I/O. A queue-

based data plane stages data between applications and storage nodes and implements performance

and routing mechanisms for transferring data between compute and storage nodes at the middle-

ware layer (e.g., MPI-IO). A hierarchically distributed control plane offers the mechanisms for co-

ordinating and controlling routing-related activities. Controllers are hierarchically deployed over

compute premises and perform different levels of control and enforcement. Similarly, SIREN [42]

enforces end-to-end performance objectives by dynamically allocating resources according to ap-

plications’ demands. It introduces the concept of SDS resource enclaves for resource manage-

ment of HPC storage settings, allowing users to specify I/O requirements via reservation and

sharing of compute and storage resources between applications. A hierarchy-based controller effi-

ciently enforces performance objectives over managed resources, while data plane stages deployed

throughout the I/O stack (e.g., request schedulers, parallel file systems) dispatch I/O requests

through a queue-based structure that enforces the reservations and shares specified by control

instances.

The recent efforts on designing and implementing SDS-enabled HPC infrastructures have

proven its utility and feasibility on high-performance technologies. As we move closer to the Ex-

ascale era [22], the adoption of the SDS paradigm by the scientific community is key to ensure

end-to-end enforcement, I/O differentiation, and performance isolation over large-scale supercom-

puters. When compared to other infrastructures, HPC premises contain different requirements in

terms of architecture and hardware, turning unfeasible the applicability of non-HPC-based SDS

systems over such environments. First, HPC storage backends are generally composed by a shared

file system [84], which becomes a major performance bottleneck when concurrently used by hun-

dreds to thousands of applications competing for shared resources, leading to high levels of I/O

interference and performance degradation [76, 111]. Second, HPC applications generate complex

workflows (e.g., scientific simulations, real-time visualizations), which translate into different stor-

age objectives and services to be employed over I/O flows [35].

3.1.3 Application-specific Infrastructures. Application-specific infrastructures are storage

stacks built from the ground up, designed for specialized storage and processing purposes to

achieve application-specific I/O optimizations [87]. Production-grade clusters include multi-tenant

distributed storage systems such as Hadoop [93], Ceph [107], and OpenStack Swift, being mainly

composed by proxy and storage servers. Proxy servers map application requests to the respec-

tive data location and provide global infrastructure visibility, system-wide management activities

(e.g., load balancing, lease management), and high availability. Storage servers are user-space dae-

mons that persist applications’ data. While these systems are built to run on commodity hard-

ware, enterprise-grade infrastructures may hold hundreds to thousands of storage servers inter-

connected with dedicated network links. Each server accommodates several multicore processors

and storage drives hierarchically organized. Such a specialized environment leads to hard-coded

designs and predefined I/O stacks, making the programmability of such systems challenging [87].

Further, the absence of performance guarantees and isolation leads to greedy tenants and back-

ground tasks (e.g., garbage collection, replication) consuming a large quota of resources, impacting

the overall system performance [60, 62]. While several mechanisms have been proposed to address

different system intricacies (e.g., workload awareness, availability), none have considered end-to-

end enforcement of storage policies or improved programmability of specialized stacks. As such,

several SDS-enabled systems have been proposed to address such challenges. Even though these

infrastructures can be seen as a subfield of cloud computing (or even HPC), for the purpose of this

article and to provide a more granular classification, we classify these in a separate category.
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The requirements of isolation and fairness in distributed storage systems have led researchers to

shift from hard-coded single-purpose implementations to software-defined approaches. Retro [60]

enforces performance guarantees and fairness over multi-tenant Hadoop stacks by identifying and

rate limiting workflows bottlenecking shared resources. A reactive flat-based controller enforces

fine-tuned policies in the presence of bursty and volatile workloads, while queue-based stages

abstract arbitrary system resources (e.g., storage devices, CPU, thread pools) and employ perfor-

mance management features over priority queues, fair schedulers, and token-buckets implemented

along the I/O path. Further, Cake [105] introduces end-to-end enforcement of 99th-percentile la-

tency objectives over Hadoop storage stacks. Similarly to AVATAR [117], Cake proposes a two-level

scheduling framework, where a centralized controller continuously monitors latency performance

and orchestrates queue-based stages to perform per-tenant prioritization through proportional

sharing and reservations. Stages are deployed at RPC layers, providing differentiated scheduling

of I/O requests and enabling multi-resource control throughout the storage stack.

While these systems focus on the performance and resource management of Hadoop stacks,

others focus on multi-tenant object stores. Crystal [26] provides an SDS-enabled object store that

supports resource sharing and isolation in the presence of heterogeneous workloads. Implemented

over the OpenStack Swift [71], a storlet-based data plane injects user-defined services over I/O

flows, such as compression, caching, encryption, and bandwidth control. At the control plane,

flat-based controllers dynamically adapt stages according to tenants’ requirements. Controllers are

twofold, divided into global controllers with system-wide visibility that continuously control, moni-

tor, and disseminate storage policies to data stages and other controllers, and automation controllers
with limited visibility that enforce dedicated control actions over selected points of the I/O path.

Commercial storage systems have also experienced a thrust toward the software-defined do-

main. For instance, Coho Data [18, 109] proposes an SDS enterprise storage architecture that

provides efficient, scalable, and highly available control over high-performance storage devices

(e.g., PCIe storage drives). At the control plane, Mirador [109] provides a flat-based dynamic

storage placement service that orchestrates heterogeneous scale-out storage systems. To enforce

routing and data management activities, the control plane continuously collects resource metrics

and workload profiles of the cluster and uses solvers to calculate enforcement plans. At the data

plane, Strata [18] implements a stack-based network-attached object store that manages high-

performance storage devices under multi-tenancy. Stages are deployed over both SDN-enabled

switches, for flow customization and data placement, and PCIe flash devices, to employ striping,

replication, and deduplication over I/O requests.

As several systems provide a rich spectrum of storage functionalities (e.g., resource shar-

ing, durability, load balancing), some SDS systems rely on these artifacts to improve control

functionality of the storage environment [87, 88, 101]. For instance, Mantle [86, 88] decouples

management-based policies from the storage implementation, allowing users to fine-tune and

adapt the storage environment under volatile requirements. At the control plane, a heuristic-

based policy engine injects management policies into distributed storage systems, such as

Ceph [107], while a storlet-based data plane abstracts underlying storage artifacts through a

data management language, allowing users to build flexible and fine-grained policies, such as

programmable caching and metadata management. On the other hand, SuperCell [101] relies

on the flexibility and availability of Ceph and proposes an SDS-based recommendation engine

that measures and provides cluster configurations under varied workload settings. A centralized

controller measures workload characteristics (e.g., I/O size, read/write proportion) and generates

enforcement strategies tailored to meet users’ requirements in a cost-effective manner. At the data

plane, SuperCell fine-tunes storage settings and configurations of Ceph deployments at runtime

to cope with different performance and data objectives.
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Differently, other systems propose novel abstractions and storage features over application-

specific stacks [75, 87]. Malacology [87] is a controllerless SDS system that provides novel storage

abstractions by exposing and repurposing code-hardened storage artifacts (e.g., resources, ser-

vices, abstractions) into a more programmable environment. Rather than creating storage systems

from the ground up, Malacology encapsulates existing system functionalities into reusable build-

ing blocks that enable general-purpose systems to be programmed and adapted into tailored stor-

age applications via composition. Implemented over Ceph, Malacology decouples policies from

storage mechanisms through a storlet-based data plane that exposes commonly used services as

programmable interfaces that hold the main primitives for developing comprehensive storage ap-

plications, namely service metadata, data I/O, resource sharing, load balancing, and durability.

Following these same principles, SafeFS [75] aims at repurposing existing FUSE-based file sys-

tem implementations into stackable storage services to employ over I/O requests. Specifically,

SafeFS provides a flexible and extensible stack-based data plane that abstracts the file system

layer to enable the development of POSIX-compliant file systems atop FUSE. Its stackable orga-

nization enables layer interoperability and allows system operators to simply stack independent

layers to enforce different storage objectives, such as encryption, replication, erasure coding, and

caching.

Previous works on application-specific storage have already crossed the path of software-

defined principles [8, 43, 64]. Specifically, as a first attempt toward SDS, Triage [43] introduced

an adaptive control architecture to enforce throughput and latency objectives over the Lustre par-

allel file system [84], in the presence of bursty and volatile workloads. Adaptive flat-based con-

trollers orchestrate per-client I/O flows and regulate request queues according to user-defined per-

formance objectives. At the data plane, queue-based stages rate limit requests before dispatching

them to Lustre storage servers. Differently, PADS [8] provides a policy-based architecture to ease

the development of custom distributed storage systems. Control and data planes are not physically

decoupled, and part of the control logic is shared with a storlet-based data plane. Control applica-

tions hold routing and blocking policies to define the logic of the correspondent storage system.

Routing policies define data flows, while blocking policies specify consistency and durability ob-

jectives. At the data plane, stages accommodate a set of common storage services (e.g., replication,

consistency, storage interface) that allow system designers to develop tailored systems via com-

position, by simply defining a set of policies rather than implementing them from the ground up.

Further, Mesnier et al. [64] propose a classification architecture to achieve I/O differentiation at the

kernel level. As the performance of compute servers is often determined by the I/O interference

and performance degradation of storage servers, it proposes a classification framework that is able

to classify I/O requests at compute instances and differentiate them at storage servers according

to user-defined policies, thus ensuring performance isolation and resource fairness.

The introduction of software-defined principles into application-specific storage infrastructures

has led to significant improvements in terms of programmability and resource efficiency. Its design

allows users to experience sustained QoS provisioning and performance isolation in multi-tenant

settings, instead of the formerly predefined and single-purposed approaches. However, as these

infrastructures typically provide a homogeneous I/O stack, employing application-specific SDS

systems over the cloud or HPC can be a challenging endeavor, due to their wide array of storage

subsystems (that do not operate holistically [35]) and heterogeneous workloads [42, 92].

3.2 Survey by Control Strategy

As SDS systems are employed over different storage contexts, controllers may assume different

control strategies to adapt existing services to the specified objectives. We now survey SDS systems

regarding control strategy employed at the control plane, namely feedback control and performance
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Table 3. Classification of SDS Systems Regarding Control and Enforcement Strategies

Control Strategy Enforcement Strategy

Feedback Modeling Algorithms T. Bucket Scheduling P. Queues Injection

IOFlow [99] Reactive PS � �
Moirai [97] Reactive S

sRoute [96] Reactive PS �
JoiNS [108] H �

Façade [59], AVATAR [117] Non-linear PI EDF

Pisces [92] PS DRF, DRR

Libra [91] S DDRR

PM [120], WC [119] Proactive LP I � �
PSLO [54] Integral LP �

Tiera [77], Malacology [87] �
Wisp [98] Reactive DRF, BRF,

EDF, LSTF

flexStore [66], Mirador [109] LP S

SIREN [42] ML S �
Retro [60] Reactive P � DRF, BRF �

Cake [105] Reactive PS �
Crystal [26] Reactive P �

Mantle [86], SuperCell [101] H �
Triage [43] Adaptive LP I �

Modeling. (H)euristic, (L)inear (P)rogramming, (M)achine (L)earning. Algorithms. (P)roportional sharing, (I)solation and

priority, (S)hares and reservations.

modeling. Table 3 highlights the control strategies and algorithms used by SDS controllers and

depicts the current trends and unexplored aspects of the paradigm.

3.2.1 Feedback Control. Control-theoretic approaches have been widely used to provide sus-

tained storage performance [31]. A feedback-based controller avoids the need for accurate perfor-

mance modeling by dynamically adjusting I/O workflows to meet different storage objectives. It

does so through a control loop, which depends on input metrics, control actions, and control inter-
vals. The controller continuously monitors system metrics (e.g., throughput, latency) and validates

them with installed storage policies. In case of policy violation, the controller adjusts data plane

stages through control actions, which rely on the enforcement strategy employed at the stage (e.g.,

adjust arrival rate of I/O, increase queue depth). Monitoring is made periodically in a predefined

control interval. Large intervals result in longer unsupervised control periods, leading to policy

violations and performance degradation in case of burstiness or volatile workloads. Small inter-

vals lead the controller to react to performance outliers, resulting in fine-grained adjustments that

inhibit sustained storage efficiency.

Reactive SDS controllers employed by IOFlow and sRoute continuously collect throughput and

latency metrics of different points of the I/O path. For each stage, the controller enforces control

actions over a token-bucket that rate limits queues according to max-min fairness algorithms [12],

efficiently providing distributed and dynamic enforcement and differentiated I/O treatment. Dif-

ferently, controllers of Wisp and Crystal rely on throughput-only observations. Wisp rate limits

request queues of micro-services according to different scheduling policies, while Crystal observes

per-tenant throughput at OpenStack Swift nodes and allocates proportional bandwidth shares to

ensure performance guarantees. In proportional sharing, processes are assigned with a notion of
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weight, and resources are proportionally allocated based on it [104]. Further, Moirai uses average

latency and hit ratio curves to adjust the configurations of stack-based caching stages.

Reactive approaches are also used to enforce tail latency objectives over complex storage set-

tings. For instance, Cake provides a two-level scheduling framework that continuously collects

latency and resource utilization metrics over distributed storage stacks, and dynamically adjusts

per-client queues according to proportional shares and reservations. In these algorithms, shares

specify the resource allocation that a certain process receives, while reservations express the lower

bound of I/O performance reserved to a process [42]. Similarly, Retro observes per-workflow la-

tency and resource usage and employs control actions over token-buckets, schedulers, and priority

queues, according to max-min fair shares. The collection of heterogeneous metrics, along the mul-

tiple enforcement points deployed along the I/O path, allows Cake and Retro to differentiate I/O

flows and enforce 99th-percentile latency objectives over Hadoop storage stacks.

Nonetheless, while able to enforce different performance objectives over varied storage stacks,

reactive controllers cannot sustain efficient performance at high-latency percentiles under bursty

workloads, as they experience several policy violations before beginning a new control loop and

adjusting stages accordingly [120]. As such, several systems follow a proactive control strategy

to enforce 99th-, 99.9th-, and 99.99th-percentile latencies. For example, PM and WC provide a

proactive feedback controller that models per-workload worst-case latency and enforces different

control actions over multiple rate limiters and priority queues, according to isolation and prior-

ity rules. Each stage consists of per-workload token-buckets and priority queues and efficiently

enforces services over network and storage resources.

While these systems are designed to either provide throughput or tail latency objectives, PSLO

achieves both by providing an integral feedback controller backed by a forecast model. It continu-

ously monitors per-VM X th percentile latency and throughput and adaptively configures the level

of I/O concurrency and arrival rates, providing isolated and differentiated service levels.

Other approaches follow a non-linear feedback control to enforce proportional sharing and iso-

lation in the presence of bursty and volatile workloads [59, 117]. For instance, Façade collects

the average latency of requests accessing the storage utility of a shared storage system and dy-

namically adjusts the depth of the device queue. AVATAR follows a similar approach but enforces

95th-percentile latency. Differently, adaptive feedback controllers backed by self-tuning estima-

tors, such as the one proposed by Triage, provide predictive and differentiated storage performance

under varying workloads. Triage periodically observes latency perceived by Lustre-deployed ap-

plications and throttles per-client request queues to provide sustained throughput and latency.

3.2.2 Performance Modeling. Other strategies often used by SDS systems to efficiently control

the storage environment are heuristics, which control and adjust selected enforcement points to

meet a specific storage objective [88, 101, 108], and performance models, which characterize the

behavior of the system and its workloads [42, 43, 54, 66, 109, 119, 120].

Heuristics. SDS controllers resort to heuristic-based mechanisms to estimate throughput or

latency performance of selected points of the I/O stack. For instance, JoiNS continuously monitors

latency and bandwidth utilization at network and storage stages and provides a simple heuris-

tic that estimates network latency of networked storage systems. From this estimation, the con-

troller adjusts priority queues installed at programmable switches to meet average and tail latency

requirements. Similarly, SuperCell observes read and write latencies of Ceph storage nodes and

implements a bandwidth-centered heuristic that calculates per-workload maximum bandwidth to

provide adaptive configuration under read- and write-intensive workloads. Mantle, on the other

hand, supports user-defined heuristics to provide programmable metadata management and load

balancing over Ceph deployments.
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Linear Programming. Linear programming (LP) mechanisms are also frequently used to sup-

port SDS control actions. For instance, flexStore resorts to an integer linear program to enforce

adaptive replica consistency under varied energy constraints, and network and disk bandwidth,

while Triage continuously collects latency measurements to serve a Recursive Least-Squares esti-

mator that supports the feedback controller actions. Differently, general-purpose solvers used by

Mirador estimate the performance of network-attached storage systems according to user-defined

objectives. These solvers leverage from the continuous observations of network and storage re-

sources, as well as periodic workload profiles, to optimize network traffic and data placement.

Latency analysis models are also used to enforce tail latency objectives under bursty scenarios.

Leveraging from network calculus principles, PM and WC propose a model that estimates per-

workload worst-case latencies. It models multiple system endpoints and induces time, flow, rate

limit, and work conservation constraints to maximize the available time to serve a workload. Sim-

ilarly, PSLO provides a forecast model that predicts per-VM high-percentile latency violations to

simultaneously enforce X th percentile latencies and throughput objectives.

Machine Learning. The use of maching learning (ML) to implement control strategies has just

been recently adopted by SDS controllers. Specifically, SIREN uses an ML-based algorithm (i.e.,

classification and regression trees [17]) to assign proportional shares and reservations of compute

and storage resources to HPC applications. While SIREN proposes resource enclaves for the effi-

cient management of HPC infrastructures, the algorithm identifies opportunities for enclave mi-

grations, due to workload and I/O demand variance. The introduction of such storage automation

mechanisms allows more accurate enforcement strategies and fine-grained control over storage

infrastructures.

3.3 Survey by Enforcement Strategy

The need to enforce varied storage policies throughout the I/O path leads SDS systems to assume

different enforcement strategies. We now survey SDS systems regarding enforcement strategy

employed at data plane stages, namely token-buckets, scheduling, priority queues, and logic injection.

Table 3 highlights the enforcement strategies used by SDS data planes and depicts the current

trends of the paradigm.3

3.3.1 Token-Bucket. A token-bucket is an abstract structure used by queues to control the rate

and burstiness of I/O flows. A bucket is configured with a bucket size, which delimits the maximum

token capacity, and a bucket rate, which defines the rate at which new tokens are added. When an

I/O request arrives at the queue, it consumes tokens to proceed. If the bucket is empty, the request

waits until sufficient tokens are in the bucket. Each bucket executes locally but is configured by

SDS controllers according to existing storage policies and the current system state. Several SDS

systems resort to token-bucket mechanisms for enforcing performance-oriented policies [60, 96,

99, 119, 120].

Per-queue token-buckets, such as the ones of IOFlow and sRoute, enforce max-min fair shares

over I/O flows. As stages are deployed throughout the I/O path, queues are adjusted with differ-

ent rates and sizes, providing differentiated I/O treatment and dynamic end-to-end control. Simi-

larly, Retro proposes multipoint per-workflow token-buckets, employed over thread pools and RPC

queues to achieve performance guarantees and resource fairness objectives in Hadoop stacks.

Per-workload token-buckets enforce tail latency objectives under bursty environments [119,

120]. To better bound the workload burstiness, PM implements multiple token-buckets per work-

load at each data plane stage, which in turn are continuously controlled and modeled by a proactive

3Systems that enforce scheduling mechanisms but do not detail employed policies are marked with �.

ACM Computing Surveys, Vol. 53, No. 3, Article 48. Publication date: May 2020.



A Survey and Classification of Software-Defined Storage Systems 48:27

feedback controller. On the other hand, WC optimizes the choice of bucket parameters through a

rate-bucket size curve that characterizes workload burstiness while consolidating workloads into a

storage server, in order to both meet tail latency objectives and minimize overall resource usage.

3.3.2 Scheduling. Scheduling has been a long-term strategy of storage systems to govern how

I/O requests are served. In SDS-enabled architectures, scheduling is generally made over data plane

queues to employ proportional sharing algorithms, prioritize and isolate requests, and enforce

performance objectives over storage and network resources. For instance, single queue scheduling

systems, such as Façade and AVATAR, manage per-workload requests to meet average and tail

latency objectives. Requests are dispatched to a queue and served to a storage utility following an

Earliest Deadline First (EDF) policy. As latency objectives are enforced at per-workload granularity,

the deadline of a workload is the deadline of its older pending request [59].

Other solutions implement multi-point resource scheduling mechanisms to achieve fairness and

sustained latency performance. Retro, for example, orchestrates per-workflow requests, employ-

ing a Dominant Resource Fairness (DRF) policy [25] to ensure resource fairness, and a Bottleneck
Resource Fairness (BRF) policy [60] to throttle aggressive workflows and ensure proportional use

of resources. Similarly, Pisces employs a per-node scheduler that implements DRF and Deficit
(Weighted) Round Robin (DRR) policies [90, 92] to achieve system-wide fairness in multi-tenant

cloud environments. Under a DRF policy, per-node schedulers track the resource usage of each

tenant and recompute its resource allocation to continuously ensure max-min fair shares, while

in DWRR, Pisces ensures per-tenant weighted fair shares of throughput. Libra, on the other hand,

follows a similar approach but provides throughput reservations over disk resources through a

Distributed Deficit Round Robin (DDRR) scheduling policy [55]. Further, Wisp rate limits micro-

service workflows through BRF and DRF policies to achieve throughput objectives and simultane-

ously prioritizes individual requests through EDF and Least Slack Time First (LSTF) [98] to enforce

latency-related objectives.

3.3.3 Priority Queues. A number of SDS systems ensure prioritization and performance control

through priority queues [60, 99, 108, 119, 120]. Controllers define and adjust the priority of queue-

based data planes to provide different levels of latency among workloads according to installed

storage policies. For instance, IOFlow, PM, and WC define the priority of token-bucket-enabled

queues. Specifically, token-buckets serve first the highest-priority queues until no token is left,

serve next lower-priority queues upon the replenishment of the bucket. Moreover, PM and WC

specify per-workload priority queues over both storage and network resources. Retro, on its turn,

enforces per-workflow priority queues over multi-point data plane stages, while JoiNS provides

per-workload priority queues over programmable network switches.

3.3.4 Logic Injection. Storlet-based stages implement programmable enforcement structures to

allow system designers to inject custom control logic over I/O flows [26, 87, 88, 101]. For instance,

Mantle and Malacology leverage from existing storage subsystems of Ceph, such as durability, load

balancing, and resource sharing, and inject control logic to enforce performance and data manage-

ment storage policies. Mantle decouples policies from storage services by letting administrators

inject metadata migration code to dynamically adjust metadata distribution of Ceph deployments.

On the other hand, Malacology encapsulates existing system functionalities into reusable building

blocks and injects Lua scripts to enable general-purpose systems to be programmed and adapted

into tailored storage applications via composition. Further, SuperCell continuously monitors read

and write requests of Ceph storage nodes and provides different storage reconfigurations to adapt

storage settings under volatile workloads.
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Differently, Crystal provides a programmable framework that allows the injection of program-

ming logic to perform custom computations over object requests. This design allows administra-

tors to implement a wide array of storage services to cope with different performance and data

management policies, such as compression, cache optimization, and bandwidth differentiation.

3.4 Discussion

The SDS paradigm has drawn major focus on providing controlled I/O performance and fairness

over cloud and application-specific infrastructures. While generally providing centralized and flat

distributions, the next step toward scalable environments is to foster the development of hierar-

chical and decentralized control planes in such infrastructures. SDS-enabled HPC infrastructures,

which are still at an early research stage, are composed of hierarchical control designs due to the

increasing scale and performance requirements of supercomputers.

The centralized control distribution assumed by several SDS systems presents obvious limita-

tions in scale and resilience. However, systems experience such limitations at different magnitudes,

as they may provide a different number of stages and enforce storage policies with different degrees

of complexity. Specifically, Façade and AVATAR enforce performance-oriented objectives over a

single enforcement point, while Pisces, Libra, PSLO, and Cake need to orchestrate multiple points

of control. Further, Wiera, SuperCell, and Mantle enforce data-oriented policies by injecting con-

trol logic at stages, which is less demanding than continuously adjusting stages for performance

policies.

Differently, other systems follow a flat control distribution, with a prevalence on performance

enforcement. While providing a more dependable design, the control centralization leads to clear

scalability limitations. Interestingly, as systems enforce different storage policies over infrastruc-

tures, they implement different control strategies to adapt data stages to specified objectives. For

instance, some systems like IOFlow resort to feedback control to continuously adjust the storage

environment, while others, such as flexStore and Mirador, employ performance modeling strate-

gies. As both folds provide a single control strategy, they are unable to provide a fully adaptable

SDS environment. On the other hand, PM, WC, Triage, and PSLO combine feedback control and

performance modeling strategies, thus providing a more adaptable storage environment, capable

of enforcing complex storage policies under volatile environments.

Regarding hierarchical controllers, while providing a scalable design, some solutions present

dependability limitations. For instance, the failure of a controller in Clarisse and SIREN systems

leads to unsupervised control points in the infrastructure. Contrarily, sRoute and JoiNS issue con-

trol delegates to enforce policies in specific points of the I/O path, which, in case of failure, can be

replaced online by another delegate.

On the data plane side, stack-based approaches focus on data management services, as data

flows follow a pass-through layout and do not employ enforcement strategies. Existing stack-

based systems may provide dedicated stacks designed for a specific objective such as flexStore and

Moirai, or multiple stacking layers as done in SafeFS and Strata to provide a variety of storage

services.

Queue-based data planes, on the other hand, are mainly designed to meet performance objec-

tives. Nonetheless, even though operating over similar storage structures, existing approaches

may differ from each other in several aspects. For instance, single queue systems, such as Façade

and AVATAR, enforce average performance policies and are unable to meet high latency per-

centiles. Differently, Pisces and Libra provide system-wide performance isolation and fairness

over multi-tenant cloud environments by enforcing per-tenant max-min fair shares. Other sys-

tems, such as PM and WC, provide multi-resource scheduling to enable complex storage policies

to be enforced over network and storage resources. Further, IOFlow and PSLO provide multiple
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enforcement queues, each serving at different rates in a per-VM basis, providing distributed and

dynamic policy enforcement.

Finally, storlet-based systems introduce novel storage abstractions and programmability to ex-

isting storage systems. For instance, Crystal, Tiera, and SuperCell repurpose existing storage sub-

systems and configurations to enforce data and routing activities. Malacology, Mantle, and PADS,

on the other hand, abstract underlying storage systems to ease the development of custom storage

systems. As opposed to stack-based designs, which are transparent as stacks seat between two I/O

layers, storlet-based stages introduce increased complexity to the design of storage solutions.

4 LESSONS LEARNED AND FUTURE DIRECTIONS

We now discuss the key insights provided by this survey, grouped by storage infrastructure (SIx );

planes of functionality, namely data (Dx ) and control planes (Cx ); SDS interfaces (Ix ); and other

aspects of the field (Ox ). We focus on the design space and characteristics of current SDS systems

and on possible future research directions of the paradigm.

SI1: SDS research is widely explored over cloud and application-specific infrastruc-

tures. SDS research has drawn major focus on cloud and application-specific designs. However, the

former are generally composed by centralized and flat controllers and queue-based stages, while

the latter focus on storlet-based designs. With the continuous increase of data centers’ complexity,

as well as the emergence of serverless cloud computing [40], further research on hierarchical and

decentralized control plane distributions will be needed to employ over such infrastructures.

SI2: HPC-based SDS systems are at an early research stage. The increasing requirements

of scale and performance of supercomputers have led to the first advances toward SDS-enabled

HPC systems being composed by hierarchical control distributions backed by high-performance

queues. Considering that few proposals address this challenge, novel contributions are expected

to foster research in the SDS-HPC field and to attend to the requirements of incoming Exascale

infrastructures [1, 22], as well as to approximate HPC and cloud ecosystems [67].

SI3: SDS systems for emerging computing paradigms are unexplored. SDS-enabled sys-

tems have been employed over modern storage infrastructures to achieve different objectives.

However, with the emergence of novel computing paradigms such as serverless cloud comput-

ing [40], IoT [5], and Exascale computing [22], a number of challenges (e.g., scalability, perfor-

mance, resiliency) need to be addressed to ensure sustained storage efficiency. As such, the re-

search and development of novel decentralized SDS architectures (e.g., wide-area SDS systems,

gossip-based control protocols), as well as the convergence of different software-defined technolo-

gies (e.g., storage, networking, security), will be essential to provide a fully programmable storage

environment and attend to the requirements of emerging computing paradigms.

D1: Stage design impacts programmability and extensibility. Several SDS data planes

rely on queue-based designs, trading customization and transparency for performance. This

performance-focused development has led queue-based solutions to experience limited pro-

grammability and extensibility. Storlet-based solutions, however, comprehend a more pro-

grammable and extensible design, being able to serve general-purpose storage requirements.

D2: End-to-end enforcement is hard to ensure. Most SDS systems provide distributed en-

forcement points bounded to a specific layer of the I/O stack (e.g., hypervisor, file system). Systems

that ensure efficient end-to-end policy enforcement comprehend specialized queue-based stages

fine-tuned for specific storage services, which require significant code changes to the original code-

base. As such, end-to-end enforcement is tightly coupled to the placement property and directly

influences the transparency of data plane stages.

D3: Performance management services dominate SDS systems. Performance-oriented ser-

vices have dominated the spectrum of storage policies and services supported by SDS systems. This
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design has led to a large research gap for the remaining policy scopes. Nevertheless, the advent of

modern storage technologies, such as kernel-bypass [116], storage disaggregation [46, 89], and new

storage hardware [41, 45], along with the emergence of novel computing paradigms, requires sig-

nificant attention and further investigation in order to adapt, extend, and implement novel storage

features over SDS data planes [1]. As such, there is a great research opportunity to explore these

new technologies in SDS architectures.

D4: End-to-end storlet data planes are unexplored. Despite the acknowledged programma-

bility and extensibility benefits of storlet-based data planes, end-to-end enforcement has not yet

been explored with such design. In fact, there are few proposals on storlet data planes, and several

contributions and combinations of storage spaces are possible, being of utmost interest for attain-

ing the requirements of incoming serverless cloud computing [40] and IoT infrastructures [1, 5],

as well as on the approximation of HPC and cloud ecosystems [67].

D5: Repurposing of existing storage subsystems is overlooked. Existing services installed

at data plane stages are mainly designed from the ground up and fine-tuned for a specific data plane

solution. While some solutions already encapsulate existing storage systems as reusable building

blocks [75, 87], there is no SDS system that leverages from existing storage subsystems (e.g., QoS

provisioning, I/O scheduling) to be repurposed as programmable storage objects and reused in

different storage contexts throughout the I/O path (e.g., key-value stores, distributed file systems).

Such a design would open research opportunities toward programmable storage stacks and foster

reutilization of complementary works [44, 76, 112] and existing storage subsystems [23].

D6: Heterogeneous data planes are unexplored. Despite the number of possible config-

urations and design flavors of SDS data planes, the combination of different stage designs has

not yet been explored. This turns the data plane domain mostly monolithic, tailored for spe-

cific storage objectives and suboptimal enforcement efficiency. As such, following the steps of

the SDN paradigm [50], novel contributions toward heterogeneous data plane environments that

explore the different tradeoffs of combining stack-, queue-, and storlet-based designs should be

pursued.

C1: Current systems are unsuitable for larger environments. A large quota of SDS con-

trollers follow a flat distribution to serve small to medium-sized storage infrastructures [99]. How-

ever, the emergence of novel computing paradigms made of complex and highly heterogeneous

storage stacks (e.g., serverless computing, IoT) make current control centralization assumptions

unsuitable. As such, leveraging from the initial efforts of decentralized controllers [98], it is essen-

tial to further investigate this topic and provide novel contributions toward control decentraliza-

tion.

C2: Controllers lack programmability. Current hierarchical controllers resort to delegate

functions or micro-services to improve control scalability, providing limited control functional-

ity to control peers. Instead, it would be interesting to follow similar design principles as SDS

data planes and make control functionality more programmable. Researching different paths of

scalability and programmability in SDS would bring major benefits for incoming storage infras-

tructures [1].

C3: Scalability and dependability are overlooked. SDS systems use a “logically centralized”
controller to orchestrate the storage environment [99]. However, behind this simple but ambiguous

assumption lies a great deal of practical complexity of dependability, leaving no clear definitions

on its practical challenges and actual impact in performance and scalability at the overall storage

infrastructure. Similarly to other software-defined approaches [52], these assumptions leave sev-

eral open questions regarding controllers’ dependability that require further investigation such

as fault tolerance and consistency [11, 15, 16, 48], load balancing and control dissemination [21],

controller synchronization [81], and concurrency [24].
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C4: Controllers are self-adaptable. Several controllers resort to feedback control mechanisms

to dynamically adjust SDS settings, while few proposals rely on performance modeling techniques

to provide a more accurate and comprehensive automation model. However, the storage landscape

is changing at a fast pace, with new computing paradigms and emerging hardware technologies

vested with novel workload profiles. As such, it is essential to advance the research of autonomous

mechanisms for supporting control decisions of SDS controllers, by combining and providing novel

control strategies. For instance, exploring distributed ML techniques [53] would be of great util-

ity to attend to the needs of both modern and emerging infrastructures, not only for the obvious

reasons of scale but also for ensuring new levels of accuracy in heterogeneous and volatile envi-

ronments.

I1: Communication protocols are tightly coupled to planes of functionality. SDS inter-

faces are used as simple communication APIs, making communication protocols tightly coupled

to either the control or data plane implementation. This design prevents the reutilization of alter-

native technologies and inhibits SDS systems to be adaptable to other storage contexts without

significant code changes at the communication codebase. As such, decoupling the communication

from control and/or data plane implementations would improve the transparency between the two

planes of functionality, foster reutilization of communication protocols, and open research oppor-

tunities to attain the communication challenges of novel storage paradigms [5, 40] and network

fabrics [1].

I2: Interfaces lack standardization and interoperability. Contrarily to SDN [50], SDS litera-

ture does not provide any standard interface to achieve interoperability between SDS technologies.

Indeed, this lack of standardization leads researchers and practitioners to implement custom in-

terfaces and communication protocols for each novel SDS proposal, tailored for specific software

components and storage purposes. Such a design inhibits interoperability between control and

data plane technologies and hinders the independent development of each plane of functionality.

As such, novel contributions toward standard and interoperable SDS interfaces should be expected.

O1: Black-box and end-to-end monitoring are unexplored. Current monitoring mecha-

nisms of SDS controllers are predefined and static. Integrating black-box [68] and end-to-end

monitoring systems [61, 111] in these would bring novel insights to the field and would allow

assisting controllers to define accurate enforcement strategies over I/O flows. Further, black-box-

based approaches do not require a priori knowledge of the I/O stack and comprehend near-zero

changes to the original codebase.

O2: SDS paradigm lacks proper methodologies and benchmarking platforms. Current

evaluation methodology of SDS systems is mostly made through trace replaying and benchmark-

ing of selected points of the I/O path, either with specialized or with custom-made benchmarks.

Thus, there is no comprehensive SDS benchmarking methodology that systematically character-

izes the end-to-end performance and design tradeoffs of general SDS technologies. As such, these

considerations motivate novel contributions in SDS evaluation.

5 CONCLUSION

In recent years, the SDS paradigm has gained significant traction in the research community, lead-

ing to a broad spectrum of academic and commercial proposals to address the shortcomings of

conventional storage infrastructures. By reorganizing the I/O stack to disentangle control and data

flows, SDS has proven to be a fundamental solution to enable end-to-end policy enforcement and

holistic storage control and ensure performance isolation, QoS provisioning, and resource fairness.

To this end, and to the best of our knowledge, we present the first in-depth survey of the SDS

paradigm. Specifically, we explain and clarify fundamental aspects of the field and provide a com-

prehensive description of each plane of functionality, depicting the design principles, internal
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organization, and storage properties. As a first contribution, we present a definition of SDS sys-

tems and outline the distinctive characteristics of an SDS-enabled infrastructure. We define SDS

as a storage architecture that decouples storage mechanisms and policies into a control plane and

a data plane that enforces storage policies over I/O flows.

As a second contribution, we define the SDS design principles and categorize planes of function-

ality regarding internal organization and distribution. We surveyed existing work and distilled a

number of designs for data plane stages, being categorized as stack, queue, or storlet based. At the

control plane, we categorize distributed SDS controllers as being flat or hierarchically organized.

Further, we propose a taxonomy and classification of existing SDS systems to organize the mani-

fold approaches according to their storage infrastructure (i.e., cloud, HPC, and application specific),

control strategy (i.e., feedback control and performance modeling), and enforcement strategy (i.e.,

token-bucket, scheduling, priority queues, and logic injection). Cloud-based solutions address the

requirements of general-purpose storage stacks, mainly through flat controllers and queue-based

data plane stages. On the other hand, SDS-enabled application-specific systems target specialized

storage stacks tailored for dedicated storage and processing purposes, being particularly focused

on the SDS data elements. Lastly, even though at an early research stage, HPC-based solutions fol-

low hierarchical control distributions backed by high-performance queue-based stages, in order

to respond to the increasing requirements of scale and performance of supercomputers.

Finally, we provide key insights about this survey and discuss future research directions for

the field. Even though significant advances in SDS research have been made in both application-

specific and cloud computing infrastructures, several issues can still be improved, namely

scalability, control programmability, dependability, heterogeneous and alternative data plane

combinations, and novel storage policies and services of less explored scopes. Noticeably, since

HPC-oriented systems are at an early research stage, novel contributions to improve performance

variability and interference can be expected. Likewise, novel SDS solutions capable of meeting the

requirements of scale and performance of incoming infrastructures, namely serverless, IoT, and

Exascale computing, can also be expected. To conclude, due to its well-acknowledged benefits and

the need for addressing emerging storage technologies challenges, we believe that SDS research

will continue to grow at an accelerated pace in forthcoming years. Moreover, we believe the

insights provided by this survey will be of great utility to guide researchers and practitioners to

foster the SDS field.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their insightful comments and suggestions

that helped us improve this article.

REFERENCES

[1] George Amvrosiadis, Ali R. Butt, Vasily Tarasov, Erez Zadok, Ming Zhao, Irfan Ahmad, Remzi H. Arpaci-Dusseau,

Feng Chen, Yiran Chen, Yong Chen, Yue Cheng, Vijay Chidambaram, Dilma Da Silva, Angela Demke-Brown, Peter

Desnoyers, Jason Flinn, Xubin He, Song Jiang, Geoff Kuenning, Min Li, Carlos Maltzahn, Ethan L. Miller, Kathryn

Mohror, Raju Rangaswami, Narasimha Reddy, David Rosenthal, Ali Saman Tosun, Nisha Talagala, Peter Varman,

Sudharshan Vazhkudai, Avani Waldani, Xiaodong Zhang, Yiying Zhang, and Mai Zheng. 2018. Data Storage Research

Vision 2025: Report on NSF Visioning Workshop Held May 30–June 1, 2018. Technical Report.

[2] Sebastian Angel, Hitesh Ballani, Thomas Karagiannis, Greg O’Shea, and Eno Thereska. 2014. End-to-end perfor-

mance isolation through virtual datacenters. In 11th USENIX Symposium on Operating Systems Design and Imple-

mentation. USENIX, 233–248.

[3] Ali Anwar, Yue Cheng, Aayush Gupta, and Ali R. Butt. 2016. MOS: Workload-aware elasticity for cloud object stores.

In 25th ACM International Symposium on High-Performance Parallel and Distributed Computing. ACM, 177–188.

ACM Computing Surveys, Vol. 53, No. 3, Article 48. Publication date: May 2020.



A Survey and Classification of Software-Defined Storage Systems 48:33

[4] Ali Anwar, Yue Cheng, Hai Huang, Jingoo Han, Hyogi Sim, Dongyoon Lee, Fred Douglis, and Ali R. Butt. 2018. be-

spoKV: Application tailored scale-out key-value stores. In International Conference for High Performance Computing,

Networking, Storage, and Analysis. IEEE, 2:1–2:16.

[5] Luigi Atzori, Antonio Iera, and Giacomo Morabito. 2010. The Internet of Things: A survey. Computer Networks 54,

15 (2010), 2787–2805.

[6] Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, and Carl Landwehr. 2004. Basic concepts and taxonomy of

dependable and secure computing. IEEE Transactions on Dependable and Secure Computing 1, 1 (2004), 11–33.

[7] Fetia Bannour, Sami Souihi, and Abdelhamid Mellouk. 2018. Distributed SDN control: Survey, taxonomy, and chal-

lenges. IEEE Communications Surveys & Tutorials 20, 1 (2018), 333–354.

[8] Nalini M. Belaramani, Jiandan Zheng, Amol Nayate, Robert Soulé, Michael Dahlin, and Robert Grimm. 2009. PADS:

A policy architecture for distributed storage systems. In 6th USENIX Symposium on Networked Systems Design and

Implementation. USENIX, 59–73.

[9] Adam Belay, George Prekas, Ana Klimovic, Samuel Grossman, Christos Kozyrakis, and Edouard Bugnion. 2014.

IX: A protected dataplane operating system for high throughput and low latency. In 11th USENIX Symposium on

Operating System Design and Implementation. USENIX, 49–65.

[10] Samaresh Bera, Sudip Misra, and Athanasios V. Vasilakos. 2017. Software-defined networking for Internet of Things:

A survey. IEEE Internet of Things Journal 4, 6 (2017), 1994–2008.

[11] Pankaj Berde, Matteo Gerola, Jonathan Hart, Yuta Higuchi, Masayoshi Kobayashi, Toshio Koide, Bob Lantz, Brian

O’Connor, Pavlin Radoslavov, William Snow, and Guru Parulkar. 2014. ONOS: Towards an open, distributed SDN

OS. In 3rd Workshop on Hot Topics in Software Defined Networking. ACM, 1–6.

[12] Dimitri P. Bertsekas and Robert G. Gallager. 1992. Data Networks. Prentice Hall.

[13] Jean-Pascal Billaud and Ajay Gulati. 2013. hClock: Hierarchical QoS for packet scheduling in a hypervisor. In 8th

ACM European Conference on Computer Systems. ACM, 309–322.

[14] Francieli Z. Boito, Eduardo C. Inacio, Jean L. Bez, Philippe O. A. Navaux, Mario A. R. Dantas, and Yves Denneulin.

2018. A checkpoint of research on parallel I/O for high-performance computing. ACM Computing Surveys 51, 2

(2018), 23:1–23:35.

[15] Fábio Botelho, Alysson Bessani, Fernando M. V. Ramos, and Paulo Ferreira. 2014. On the design of practical fault-

tolerant SDN controllers. In 2014 3rd European Workshop on Software Defined Networks. IEEE, 73–78.

[16] Fábio Botelho, Tulio A. Ribeiro, Paulo Ferreira, Fernando M. V. Ramos, and Alysson Bessani. 2016. Design and

implementation of a consistent data store for a distributed SDN control plane. In 2016 12th European Dependable

Computing Conference. IEEE, 169–180.

[17] Leo Breiman, Jerome H. Friedman, Richard A. Olshen, and Charles J. Stone. 1984. Classification and Regression Trees.

CRC Press.

[18] Brendan Cully, Jake Wires, Dutch Meyer, Kevin Jamieson, Keir Fraser, Tim Deegan, Daniel Stodden, Geoffrey

Lefebvre, Daniel Ferstay, and Andrew Warfield. 2014. Strata: High-performance scalable storage on virtualized non-

volatile memory. In 12th USENIX Conference on File and Storage Technologies. USENIX, 17–31.

[19] Christina Delimitrou and Christos Kozyrakis. 2013. Paragon: QoS-aware scheduling for heterogeneous datacen-

ters. In 18th International Conference on Architectural Support for Programming Languages and Operating Systems.

ACM.

[20] Sarah M. Diesburg and An-I Andy Wang. 2010. A survey of confidential data storage and deletion methods. ACM

Computing Surveys 43, 1 (2010), 2:1–2:37.

[21] Advait Dixit, Fang Hao, Sarit Mukherjee, T. V. Lakshman, and Ramana Kompella. 2013. Towards an elastic distributed

SDN controller. In 2nd ACM SIGCOMM Workshop on Hot Topics in Software Defined Networking. ACM, 7–12.

[22] Jack Dongarra, Pete Beckman, Terry Moore, Patrick Aerts, Giovanni Aloisio, Jean-Claude Andre, David Barkai,

Jean-Yves Berthou, Taisuke Boku, Bertrand Braunschweig, Franck Cappello, Barbara Chapman, Xuebin Chi, Alok

Choudhary, Sudip Dosanjh, Thom Dunning, Sandro Fiore, Al Geist, Bill Gropp, Robert Harrison, Mark Hereld,

Michael Heroux, Adolfy Hoisie, Koh Hotta, Zhong Jin, Yutaka Ishikawa, Fred Johnson, Sanjay Kale, Richard Kenway,

David Keyes, Bill Kramer, Jesus Labarta, Alain Lichnewsky, Thomas Lippert, Bob Lucas, Barney Maccabe, Satoshi

Matsuoka, Paul Messina, Peter Michielse, Bernd Mohr, Matthias S. Mueller, Wolfgang E. Nagel, Hiroshi Nakashima,

Michael E. Papka, Dan Reed, Mitsuhisa Sato, Ed Seidel, John Shalf, David Skinner, Marc Snir, Thomas Sterling,

Rick Stevens, Fred Streitz, Bob Sugar, Shinji Sumimoto, William Tang, John Taylor, Rajeev Thakur, Anne Trefethen,

Mateo Valero, Aad Van Der Steen, Jeffrey Vetter, Peg Williams, Robert Wisniewski, and Kathy Yelick. 2011. The

international exascale software project roadmap. International Journal of High Performance Computing Applications

25, 1 (2011), 3–60.

[23] Matthieu Dorier, Gabriel Antoniu, Rob Ross, Dries Kimpe, and Shadi Ibrahim. 2014. CALCioM: Mitigating I/O in-

terference in HPC systems through cross-application coordination. In 2014 IEEE 28th International Parallel and Dis-

tributed Processing Symposium. IEEE, 155–164.

ACM Computing Surveys, Vol. 53, No. 3, Article 48. Publication date: May 2020.



48:34 R. Macedo et al.

[24] Ahmed El-Hassany, Jeremie Miserez, Pavol Bielik, Laurent Vanbever, and Martin Vechev. 2016. SDNRacer: Concur-

rency analysis for software-defined networks. In 37th ACM SIGPLAN Conference on Programming Language Design

and Implementation. ACM, 402–415.

[25] Ali Ghodsi, Matei Zaharia, Benjamin Hindman, Andy Konwinski, Scott Shenker, and Ion Stoica. 2011. Dominant

resource fairness: Fair allocation of multiple resource types. In 8th USENIX Symposium on Networked Systems Design

and Implementation. USENIX.

[26] Raúl Gracia-Tinedo, Josep Sampé, Edgar Zamora, Marc Sánchez-Artigas, Pedro García-López, Yosef Moatti, and Eran

Rom. 2017. Crystal: Software-defined storage for multi-tenant object stores. In 15th USENIX Conference on File and

Storage Technologies. USENIX, 243–256.

[27] Ajay Gulati, Arif Merchant, and Peter J. Varman. 2007. pClock: An arrival curve based approach for QoS guarantees

in shared storage systems. In 2007 ACM SIGMETRICS International Conference on Measurement and Modeling of

Computer Systems. ACM, 13–24.

[28] Ajay Gulati, Arif Merchant, and Peter J. Varman. 2010. mClock: Handling throughput variability for hypervisor IO

scheduling. In 9th USENIX Conference on Operating Systems Design and Implementation. USENIX, 437–450.

[29] Ajay Gulati, Ganesha Shanmuganathan, Xuechen Zhang, and Peter Varman. 2012. Demand based hierarchical QoS

using storage resource pools. In 2012 USENIX Annual Technical Conference. USENIX, 1–13.

[30] Red Hat. 2020. What is software-defined storage? Retrieved Feb. 27, 2020, from https://www.redhat.com/en/topics/

data-storage/software-defined-storage.

[31] Joseph L. Hellerstein, Yixin Diao, Sujay S. Parekh, and Dawn M. Tilbury. 2004. Feedback Control of Computing Sys-

tems. John Wiley & Sons.

[32] Chin-Jung Hsu, Rajesh K. Panta, Moo-Ryong Ra, and Vincent W. Freeh. 2016. Inside-out: Reliable performance

prediction for distributed storage systems in the cloud. In 2016 IEEE 35th Symposium on Reliable Distributed Systems.

IEEE, 127–136.

[33] Markus C. Huebscher and Julie A. McCann. 2008. A survey of autonomic computing—Degrees, models, and appli-

cations. ACM Computing Surveys 40, 3 (2008), 7:1–7:28.

[34] Patrick Hunt, Mahadev Konar, Flavio Junqueira, and Benjamin Reed. 2010. ZooKeeper: Wait-free coordination for

Internet-scale systems. In 2010 USENIX Annual Technical Conference. USENIX.

[35] Florin Isaila, Jesus Carretero, and Rob Ross. 2016. Clarisse: A middleware for data-staging coordination and control

on large-scale HPC platforms. In 16th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing.

IEEE, 346–355.

[36] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon Poutievski, Arjun Singh, Subbaiah Venkata, Jim Wan-

derer, Junlan Zhou, Min Zhu, Jonathan Zolla, Urs Holzle, Stephen Stuart, and Amin Vahdat. 2013. B4: Experience

with a globally-deployed software defined wan. In 2013 Conference of the ACM Special Interest Group on Data Com-

munication. ACM, 3–14.

[37] Yaser Jararweh, Mahmoud Al-Ayyoub, Elhadj Benkhelifa, Mladen Vouk, and Andy Rindos. 2015. SDIoT: A software

defined based Internet of things framework. Journal of Ambient Intelligence and Humanized Computing 6, 4 (2015),

453–461.

[38] Yaser Jararweh, Mahmoud Al-Ayyoub, Ala’ Darabseh, Elhadj Benkhelifa, Mladen Vouk, and Andy Rindos. 2016.

Software defined cloud: Survey, system and evaluation. Future Generation Computer Systems 58 (2016), 56–74.

[39] Xu Ji, Bin Yang, Tianyu Zhang, Xiaosong Ma, Xiupeng Zhu, Xiyang Wang, Nosayba El-Sayed, Jidong Zhai, Weiguo

Liu, and Wei Xue. 2019. Automatic, application-aware I/O forwarding resource allocation. In 17th USENIX Conference

on File and Storage Technologies. USENIX, 265–279.

[40] Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti, Chia-Che Tsai, Anurag Khandelwal, Qifan Pu, Vaishaal

Shankar, Joao Carreira, Karl Krauth, Neeraja Yadwadkar, Joseph E. Gonzalez, Raluca Ada Popa, Ion Stoica, and

David A. Patterson. 2019. Cloud Programming Simplified: A Berkeley View on Serverless Computing. Technical Report

UCB/EECS-2019-3. EECS Department, University of California, Berkeley.

[41] Rohan Kadekodi, Se Kwon Lee, Sanidhya Kashyap, Taesoo Kim, and Vijay Chidambaram. 2019. SplitFS: A file system

that minimizes software overhead in file systems for persistent memory. In 27th ACM Symposium on Operating

Systems Principles. ACM, 494–508.

[42] Suman Karki, Bao Nguyen, and Xuechen Zhang. 2018. QoS support for scientific workflows using software-

defined storage resource enclaves. In 2018 IEEE International Parallel and Distributed Processing Symposium. IEEE,

95–104.

[43] Magnus Karlsson, Christos T. Karamanolis, and Xiaoyun Zhu. 2005. Triage: Performance differentiation for storage

systems using adaptive control. ACM Transactions on Storage 1, 4 (2005), 457–480.

[44] Ian A. Kash, Greg O’Shea, and Stavros Volos. 2018. DC-DRF: Adaptive multi-resource sharing at public cloud scale.

In 9th ACM Symposium on Cloud Computing. ACM, 374–385.

[45] Hyeong-Jun Kim, Young-Sik Lee, and Jin-Soo Kim. 2016. NVMeDirect: A user-space I/O framework for application-

specific optimization on NVMe SSDs. In 8th USENIX Workshop on Hot Topics in Storage and File Systems. USENIX.

ACM Computing Surveys, Vol. 53, No. 3, Article 48. Publication date: May 2020.

https://www.redhat.com/en/topics/data-storage/software-defined-storage
https://www.redhat.com/en/topics/data-storage/software-defined-storage


A Survey and Classification of Software-Defined Storage Systems 48:35

[46] Ana Klimovic, Christos Kozyrakis, Eno Thereska, Binu John, and Sanjeev Kumar. 2016. Flash storage disaggregation.

In 11th European Conference on Computer Systems. ACM, 29:1–29:15.

[47] Ana Klimovic, Yawen Wang, Patrick Stuedi, Animesh Trivedi, Jonas Pfefferle, and Christos Kozyrakis. 2018. Pocket:

Elastic ephemeral storage for serverless analytics. In 13th USENIX Symposium on Operating Systems Design and

Implementation. USENIX, 427–444.

[48] Teemu Koponen, Martin Casado, Natasha Gude, Jeremy Stribling, Leon Poutievski, Min Zhu, Rajiv Ramanathan,

Yuichiro Iwata, Hiroaki Inoue, Takayuki Hama, and Scott Shenker. 2010. Onix: A distributed control platform

for large-scale production networks. In 9th USENIX Symposium on Operating Systems Design and Implementation.

USENIX, 25:1–25:14.

[49] Robert Krahn, Bohdan Trach, Anjo Vahldiek-Oberwagner, Thomas Knauth, Pramod Bhatotia, and Christof Fetzer.

2018. Pesos: Policy enhanced secure object store. In 12th European Conference on Computer Systems. ACM, 25:1–

25:17.

[50] Diego Kreutz, Fernando M. V. Ramos, Paulo E. Verissimo, Christian E. Rothenberg, Siamak Azodolmolky, and Steve

Uhlig. 2015. Software-defined networking: A comprehensive survey. Proceedings of the IEEE 103, 1 (2015), 14–76.

[51] Leslie Lamport. 1998. The part-time parliament. ACM Transactions on Computer Systems 16, 2 (1998), 133–169.

[52] Dan Levin, Andreas Wundsam, Brandon Heller, Nikhil Handigol, and Anja Feldmann. 2012. Logically centralized?:

State distribution trade-offs in software defined networks. In 1st Workshop on Hot Topics in Software Defined Net-

works. ACM, 1–6.

[53] Mu Li, David G. Andersen, Jun W. Park, Alexander J. Smola, Amr Ahmed, Vanja Josifovski, James Long, Eugene J.

Shekita, and Bor-Yiing Su. 2014. Scaling distributed machine learning with the parameter server. In 11th USENIX

Symposium on Operating Systems Design and Implementation. USENIX, 583–598.

[54] Ning Li, Hong Jiang, Dan Feng, and Zhan Shi. 2016. PSLO: Enforcing the X
th percentile latency and throughput

SLOs for consolidated VM storage. In 11th European Conference on Computer Systems. ACM, 28:1–28:14.

[55] Tong Li, Dan P. Baumberger, and Scott Hahn. 2009. Efficient and scalable multiprocessor fair scheduling using

distributed weighted Round-Robin. In 14th ACM SIGPLAN Symposium on Principles and Practice of Parallel Program-

ming. ACM, 65–74.

[56] libfuse. 2001. libfuse: The reference implementation of the Linux FUSE (Filesystem in Userspace) interface. Retrieved

Feb. 27, 2020, from https://github.com/libfuse/libfuse.

[57] Ke Liu, Xuechen Zhang, Kei Davis, and Song Jiang. 2013. Synergistic coupling of SSD and hard disk for QoS-

aware virtual memory. In 2012 IEEE International Symposium on Performance Analysis of Systems & Software. IEEE,

24–33.

[58] Jay Lofstead, Fang Zheng, Qing Liu, Scott Klasky, Ron Oldfield, Todd Kordenbrock, Karsten Schwan, and Matthew

Wolf. 2010. Managing variability in the IO performance of petascale storage systems. In 2010 ACM/IEEE International

Conference for High Performance Computing, Networking, Storage and Analysis. IEEE, 1–12.

[59] Christopher R. Lumb, Arif Merchant, and Guillermo A. Alvarez. 2003. Façade: Virtual storage devices with perfor-

mance guarantees. In 2nd USENIX Conference on File and Storage Technologies. USENIX.

[60] Jonathan Mace, Peter Bodik, Rodrigo Fonseca, and Madanlal Musuvathi. 2015. Retro: Targeted resource management

in multi-tenant distributed systems. In 12th USENIX Symposium on Networked Systems Design and Implementation.

USENIX, 589–603.

[61] Jonathan Mace, Ryan Roelke, and Rodrigo Fonseca. 2018. Pivot tracing: Dynamic causal monitoring for distributed

systems. ACM Transactions on Computer Systems 35, 4 (2018), 11:1–11:28.

[62] Ricardo Macedo, Alberto Faria, João Paulo, and José Pereira. 2019. A case for dynamically programmable storage

background tasks. In 2019 38th International Symposium on Reliable Distributed Systems Workshops (SRDSW’19). IEEE.

[63] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peterson, Jennifer Rexford, Scott Shenker,

and Jonathan Turner. 2008. OpenFlow: Enabling innovation in campus networks. SIGCOMM Computer Communi-

cation Review 38, 2 (2008), 69–74.

[64] Michael Mesnier, Feng Chen, Tian Luo, and Jason B. Akers. 2011. Differentiated storage services. In 23rd ACM

Symposium on Operating Systems Principles. ACM, 57–70.

[65] Microsoft. 2020. Microsoft Windows Server. Retrieved Feb. 27, 2020, from https://docs.microsoft.com/en-us/

windows-server/storage/storage.

[66] Muthukumar Murugan, Krishna Kant, Ajaykrishna Raghavan, and David H. C. Du. 2014. flexStore: A software de-

fined, energy adaptive distributed storage framework. In IEEE 22nd International Symposium on Modelling, Analysis

& Simulation of Computer and Telecommunication Systems. IEEE, 81–90.

[67] Marco A. S. Netto, Rodrigo N. Calheiros, Eduardo R. Rodrigues, Renato L. F. Cunha, and Rajkumar Buyya. 2018. HPC

cloud for scientific and business applications: Taxonomy, vision, and research challenges. ACM Computing Surveys

51, 1 (2018), 8:1–8:29.

ACM Computing Surveys, Vol. 53, No. 3, Article 48. Publication date: May 2020.

https://github.com/libfuse/libfuse
https://docs.microsoft.com/en-us/windows-server/storage/storage
https://docs.microsoft.com/en-us/windows-server/storage/storage


48:36 R. Macedo et al.

[68] Francisco Neves, Nuno Machado, and José Pereira. 2018. Falcon: A practical log-based analysis tool for distributed

systems. In 2018 48th Annual IEEE/IFIP International Conference on Dependable Systems and Networks. IEEE, 534–541.

[69] Kwangsung Oh, Abhishek Chandra, and Jon Weissman. 2016. Wiera: Towards flexible multi-tiered geo-distributed

cloud storage instances. In 25th ACM International Symposium on High-Performance Parallel and Distributed Com-

puting. ACM, 165–176.

[70] Diego Ongaro and John Ousterhout. 2014. In search of an understandable consensus algorithm. In 2014 USENIX

Annual Technical Conference. USENIX, 305–319.

[71] OpenStack. 2018. OpenStack Documentation: Storlets. Retrieved Feb. 27, 2020, from https://docs.openstack.org/

storlets/latest/.

[72] Jian Ouyang, Shiding Lin, Song Jiang, Zhenyu Hou, Yong Wang, and Yuanzheng Wang. 2014. SDF: Software-defined

flash for web-scale Internet storage systems. In 19th International Conference on Architectural Support for Program-

ming Languages and Operating Systems. ACM, 471–484.

[73] João Paulo and José Pereira. 2014. A survey and classification of storage deduplication systems. ACM Computing

Surveys 47, 1 (2014), 11:1–11:30.

[74] Simon Peter, Jialin Li, Irene Zhang, Dan R.K. Ports, Doug Woos, Arvind Krishnamurthy, Thomas Anderson, and

Timothy Roscoe. 2014. Arrakis: The operating system is the control plane. In 11th USENIX Symposium on Operating

Systems Design and Implementation. USENIX, 1–16.

[75] Rogério Pontes, Dorian Burihabwa, Francisco Maia, João Paulo, Valerio Schiavoni, Pascal Felber, Hugues Mercier,

and Rui Oliveira. 2017. SafeFS: A modular architecture for secure user-space file systems: One FUSE to rule them

all. In 10th ACM International Systems and Storage Conference. ACM, 9:1–9:12.

[76] Yingjin Qian, Xi Li, Shuichi Ihara, Lingfang Zeng, Jürgen Kaiser, Tim Süß, and André Brinkmann. 2017. A config-

urable rule based classful token bucket filter network request scheduler for the lustre file system. In International

Conference for High Performance Computing, Networking, Storage and Analysis. ACM, 6:1–6:12.

[77] Ajaykrishna Raghavan, Abhishek Chandra, and Jon B. Weissman. 2014. Tiera: Towards flexible multi-tiered cloud

storage instances. In 15th International Middleware Conference. ACM, 1–12.

[78] David Reinsel, John Gantz, and John Rydning. 2017. Data age 2025: The evolution of data to life-critical. Don’t focus

on big data; focus on the data that’s big. International Data Corporation (IDC) White Paper (2017).

[79] Erik Riedel, Garth Gibson, and Christos Faloutsos. 1998. Active storage for large-scale data mining and multimedia

applications. In 24th Conference on Very Large Databases. Citeseer, 62–73.

[80] Eric W. D. Rozier, Pin Zhou, and Dwight Divine. 2013. Building intelligence for software defined data centers: Mod-

eling usage patterns. In 6th International Systems and Storage Conference. ACM, 20:1–20:10.

[81] Liron Schiff, Stefan Schmid, and Petr Kuznetsov. 2016. In-band synchronization for distributed SDN control planes.

SIGCOMM Computer Communication Review 46, 1 (2016), 37–43.

[82] Frank B. Schmuck and Roger L. Haskin. 2002. GPFS: A shared-disk file system for large computing clusters. In 1st

USENIX Conference on File and Storage Technologies. 231–244.

[83] Bianca Schroeder and Garth A. Gibson. 2007. Disk failures in the real world: What does an MTTF of 1,000,000 hours

mean to you? In 5th USENIX Conference of File and Storage Technologies. USENIX, 1–16.

[84] Philip Schwan. 2003. Lustre: Building a file system for 1000-node clusters. In Proceedings of the 2003 Linux Sympo-

sium, Vol. 2003. 380–386.

[85] Sudharsan Seshadri, Mark Gahagan, Sundaram Bhaskaran, Trevor Bunker, Arup De, Yanqin Jin, Yang Liu, and Steven

Swanson. 2014. Willow: A user-programmable SSD. In 11th USENIX Symposium on Operating Systems Design and

Implementation. USENIX, 67–80.

[86] Michael A. Sevilla, Carlos Maltzahn, Peter Alvaro, Reza Nasirigerdeh, Bradley W. Settlemyer, Danny Perez, David

Rich, and Galen M. Shipman. 2018. Programmable caches with a data management language and policy engine. In

2018 18th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing. IEEE/ACM, 203–212.

[87] Michael A. Sevilla, Noah Watkins, Ivo Jimenez, Peter Alvaro, Shel Finkelstein, Jeff LeFevre, and Carlos Maltzahn.

2017. Malacology: A programmable storage system. In 12th European Conference on Computer Systems. ACM, 175–

190.

[88] Michael A. Sevilla, Noah Watkins, Carlos Maltzahn, Ike Nassi, Scott A. Brandt, Sage A. Weil, Greg Farnum, and Sam

Fineberg. 2015. Mantle: A programmable metadata load balancer for the Ceph file system. In International Conference

for High Performance Computing, Networking, Storage and Analysis. IEEE, 1–12.

[89] Yizhou Shan, Yutong Huang, Yilun Chen, and Yiying Zhang. 2018. LegoOS: A disseminated, distributed OS for

hardware resource disaggregation. In 13th USENIX Symposium on Operating Systems Design and Implementation.

USENIX, 69–87.

[90] M. Shreedhar and George Varghese. 1995. Efficient fair queueing using deficit Round Robin. In ACM SIGCOMM 1995

Conference on Applications, Technologies, Architectures, and Protocols for Computer Communication. ACM, 231–242.

ACM Computing Surveys, Vol. 53, No. 3, Article 48. Publication date: May 2020.

https://docs.openstack.org/storlets/latest/
https://docs.openstack.org/storlets/latest/


A Survey and Classification of Software-Defined Storage Systems 48:37

[91] David Shue and Michael J. Freedman. 2014. From application requests to virtual IOPs: Provisioned key-value storage

with Libra. In 9th European Conference on Computer Systems. ACM, 17:1–17:14.

[92] David Shue, Michael J. Freedman, and Anees Shaikh. 2012. Performance isolation and fairness for multi-tenant cloud

storage. In 10th USENIX Symposium on Operating Systems Design and Implementation. USENIX, 349–362.

[93] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. 2010. The Hadoop distributed file system.

In 2010 IEEE 26th Symposium on Mass Storage Systems and Technologies. IEEE, 1–10.

[94] Harcharan Jit Singh and Seema Bawa. 2018. Scalable metadata management techniques for ultra-large distributed

storage systems – A systematic review. ACM Computing Surveys 51, 4 (2018), 82:1–82:37.

[95] Huaiming Song, Yanlong Yin, Xian-He Sun, Rajeev Thakur, and Samuel Lang. 2011. Server-side I/O coordination

for parallel file systems. In 2011 International Conference for High Performance Computing, Networking, Storage and

Analysis. ACM, 17:1–17:11.

[96] Ioan Stefanovici, Bianca Schroeder, Greg O’Shea, and Eno Thereska. 2016. sRoute: Treating the storage stack like a

network. In 14th USENIX Conference on File and Storage Technologies. USENIX, 197–212.

[97] Ioan Stefanovici, Eno Thereska, Greg O’Shea, Bianca Schroeder, Hitesh Ballani, Thomas Karagiannis, Antony Row-

stron, and Tom Talpey. 2015. Software-defined caching: Managing caches in multi-tenant data centers. In 6th ACM

Symposium on Cloud Computing. ACM, 174–181.

[98] Lalith Suresh, Peter Bodik, Ishai Menache, Marco Canini, and Florin Ciucu. 2017. Distributed resource management

across process boundaries. In 10th ACM Symposium on Cloud Computing. ACM, 611–623.

[99] Eno Thereska, Hitesh Ballani, Greg O’Shea, Thomas Karagiannis, Antony Rowstron, Tom Talpey, Richard Black,

and Timothy Zhu. 2013. IOFlow: A software-defined storage architecture. In 24th ACM Symposium on Operating

Systems Principles. ACM, 182–196.

[100] Top500. 2020. Top 500: Supercomputers. Retrieved Feb. 27, 2020, from https://www.top500.org/.

[101] Keitaro Uehara, Yu Xiang, Yih-Farn R. Chen, Matti Hiltunen, Kaustubh Joshi, and Richard Schlichting. 2018.

SuperCell: Adaptive software-defined storage for cloud storage workloads. In 2018 18th IEEE/ACM International

Symposium on Cluster, Cloud and Grid Computing. IEEE, 103–112.

[102] Anjo Vahldiek-Oberwagner, Eslam Elnikety, Aastha Mehta, Deepak Garg, Peter Druschel, Rodrigo Rodrigues, Jo-

hannes Gehrke, and Ansley Post. 2015. Guardat: Enforcing data policies at the storage layer. In 10th European Con-

ference on Computer Systems. ACM, 13:16–13:16.

[103] VMware. 2020. VMware Cloud. Retrieved Feb. 27, 2020, from https://cloud.vmware.com/.

[104] Carl A. Waldspurger and William E. Weihl. 1994. Lottery scheduling: Flexible proportional-share resource manage-

ment. In 1st USENIX Symposium on Operating Systems Design and Implementation. USENIX, 1–11.

[105] Andrew Wang, Shivaram Venkataraman, Sara Alspaugh, Randy Katz, and Ion Stoica. 2012. Cake: Enabling high-level

SLOs on shared storage systems. In 3rd ACM Symposium on Cloud Computing. ACM, 14:1–14:14.

[106] Yin Wang and Arif Merchant. 2007. Proportional-share scheduling for distributed storage systems. In 5th USENIX

Conference on File and Storage Technologies. USENIX, 47–60.

[107] Sage A. Weil, Scott A. Brandt, Ethan L. Miller, Darrell D.E. Long, and Carlos Maltzahn. 2006. Ceph: A scalable, high-

performance distributed file system. In 7th Symposium on Operating Systems Design and Implementation. USENIX,

307–320.

[108] Hao Wen, Zhichao Cao, Yang Zhang, Xiang Cao, Ziqi Fan, Doug Voigt, and David Du. 2018. JoiNS: Meeting latency

SLO with integrated control for networked storage. In 2018 IEEE 26th International Symposium on Modeling, Analysis,

and Simulation of Computer and Telecommunication Systems. IEEE, 194–200.

[109] Jake Wires and Andrew Warfield. 2017. Mirador: An active control plane for datacenter storage. In 15th USENIX

Conference on File and Storage Technologies. USENIX, 213–228.

[110] Yiqi Xu, Dulcardo Arteaga, Ming Zhao, Yonggang Liu, Renato Figueiredo, and Seetharami Seelam. 2012. vPFS: Band-

width virtualization of parallel storage systems. In IEEE 28th Symposium on Mass Storage Systems and Technologies.

IEEE, 1–12.

[111] Bin Yang, Xu Ji, Xiaosong Ma, Xiyang Wang, Tianyu Zhang, Xiupeng Zhu, Nosayba El-Sayed, Haidong Lan, Yibo

Yang, Jidong Zhai, Weiguo Liu, and Wei Xue. 2019. End-to-end I/O monitoring on a leading supercomputer. In 16th

USENIX Symposium on Networked Systems Design and Implementation. USENIX, 379–394.

[112] Suli Yang, Tyler Harter, Nishant Agrawal, Salini S. Kowsalya, Anand Krishnamurthy, Samer Al-Kiswany, Rini T.

Kaushik, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. 2015. Split-level I/O scheduling. In 25th Sym-

posium on Operating Systems Principles. ACM, 474–489.

[113] Kok-Kiong Yap, Murtaza Motiwala, Jeremy Rahe, Steve Padgett, Matthew Holliman, Gary Baldus, Marcus Hines,

Taeeun Kim, Ashok Narayanan, Ankur Jain, Victor Lin, Colin Rice, Brian Rogan, Arjun Singh, Bert Tanaka, Manish

Verma, Puneet Sood, Mukarram Tariq, Matt Tierney, Dzevad Trumic, Vytautas Valancius, Calvin Ying, Mahesh Kalla-

halla, Bikash Koley, and Amin Vahdat. 2017. Taking the edge off with Espresso: Scale, reliability and programmabil-

ity for global Internet peering. In 2017 Conference of the ACM Special Interest Group on Data Communication. ACM,

432–445.

ACM Computing Surveys, Vol. 53, No. 3, Article 48. Publication date: May 2020.

https://www.top500.org/
https://cloud.vmware.com/


48:38 R. Macedo et al.

[114] Soheil H. Yeganeh and Yashar Ganjali. 2012. Kandoo: A framework for efficient and scalable offloading of control

applications. In 1st Workshop on Hot Topics in Software Defined Networks. ACM, 19–24.

[115] Orcun Yildiz, Matthieu Dorier, Shadi Ibrahim, Rob Ross, and Gabriel Antoniu. 2016. On the root causes of cross-

application I/O interference in HPC storage systems. In 2016 IEEE International Parallel and Distributed Processing

Symposium. IEEE, 750–759.

[116] Irene Zhang, Jing Liu, Amanda Austin, Michael Lowell Roberts, and Anirudh Badam. 2019. I’m not dead yet!: The

role of the operating system in a kernel-bypass era. In 17th Workshop on Hot Topics in Operating Systems. ACM.

[117] Jianyong Zhang, Anand Sivasubramaniam, Qian Wang, Alma Riska, and Erik Riedel. 2005. Storage performance

virtualization via throughput and latency control. In 13th International Symposium on Modeling, Analysis, and Sim-

ulation of Computer and Telecommunication Systems. IEEE, 135–142.

[118] Xuechen Zhang, Kei Davis, and Song Jiang. 2011. QoS support for end users of I/O-intensive applications using

shared storage systems. In 2011 International Conference for High Performance Computing, Networking, Storage and

Analysis. ACM, 18:1–18:12.

[119] Timothy Zhu, Michael A. Kozuch, and Mor Harchol-Balter. 2017. WorkloadCompactor: Reducing datacenter cost

while providing tail latency SLO guarantees. In 8th ACM Symposium on Cloud Computing. ACM, 598–610.

[120] Timothy Zhu, Alexey Tumanov, Michael A. Kozuch, Mor Harchol-Balter, and Gregory R. Ganger. 2014. PriorityMeis-

ter: Tail latency QoS for shared networked storage. In 5th ACM Symposium on Cloud Computing. ACM, 29:1–29:14.

Received May 2019; revised January 2020; accepted February 2020

ACM Computing Surveys, Vol. 53, No. 3, Article 48. Publication date: May 2020.


