
BDUS: Implementing Block Devices in User Space
Alberto Faria, Ricardo Macedo, José Pereira, João Paulo

INESC TEC & University of Minho

ABSTRACT
Modern general-purpose operating systems implement ma-

jor parts of their storage stacks in the kernel. Although this

bolsters performance, it also complicates development and

stifles innovation for today’s increasingly complex storage

systems. In contrast, implementing system services at the

user level eases development and maintenance, and leads to

improved portability, reliability, fault tolerance, and security.

This has motivated the widespread use in both academia

and industry of frameworks such as FUSE, which enable the

implementation of file systems in user space.

In this paper, we consider user-level development at the

storage stack’s block layer. As many applications directly or

indirectly rely on block devices to store data, this can pro-

mote and accelerate the construction of widely- and transpar-

ently-applicable storage solutions. Thus, we propose BDUS,

a framework that enables the development of block device

drivers in user space, and provide a fully-functional, open-

source implementation for Linux.

An extensive evaluation of BDUS and comparable ap-

proaches shows that the former incurs less overhead on

throughput and latency, while also reducing CPU utilization.

File system stacks featuring BDUS are likewise shown to

outperform stacks that employ the FUSE framework, con-

siderably so under metadata-intensive workloads. BDUS is

thus also a valuable tool for developing functionalities that

may be built at both the block and file system layers.

This work was financed by National Funds through the FCT – Fundação

para a Ciência e a Tecnologia (Portuguese Foundation for Science and

Technology) within project UTA-EXPL/CA/0080/2019 (Alberto Faria) and

PhD grant SFRH/BD/146059/2019 (Ricardo Macedo), and realized within

the scope of project BigHPC – POCI-01-0247-FEDER-045924 (João Paulo),

funded by the ERDF – European Regional Development Fund, through

the Operational Programme for Competitiveness and Internationalisation –

COMPETE 2020 Programme and by National Funds through FCT, I.P. within

the scope of the UT Austin Portugal Program.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

SYSTOR ’21, June 14–16, 2021, Haifa, Israel
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8398-1/21/06. . . $15.00

https://doi.org/10.1145/3456727.3463768

CCS CONCEPTS
• Software and its engineering→ Operating systems; •
Information systems→ Information storage systems.

KEYWORDS
Block storage, user-space drivers

ACM Reference Format:
Alberto Faria, Ricardo Macedo, José Pereira, João Paulo. 2021. BDUS:

Implementing Block Devices in User Space. In The 14th ACM In-
ternational Systems and Storage Conference (SYSTOR ’21), June 14–
16, 2021, Haifa, Israel. ACM, New York, NY, USA, 11 pages. https:

//doi.org/10.1145/3456727.3463768

1 INTRODUCTION
Storage services in modern general-purpose operating sys-

tems are generally implemented as part of the kernel. Com-

pared to user-space services, this avoids the overhead of

additional context switching and memory copies [27]. How-

ever, kernel-level development is notoriously complex and

confined to an environment with limited functionality, which

stifles research and innovation for the increasingly compli-

cated storage systems of today. In contrast, building such

services at the user level has several advantages: ease of devel-

opment and maintenance, greater portability, access to more

and higher-level languages and libraries, and improved relia-

bility, fault tolerance, and security [20, 26, 27, 31, 32, 36, 37].

This has motivated the use of frameworks such as FUSE [13],

which enables the implementation of file systems in user

space, being widely employed both for experimentation and

for developing full-fledged production file systems [32, 36].

In this paper, we consider user-level development at the

storage stack’s block layer of Unix-based systems. This layer

provides access to block-based storage via the block device
abstraction, which is ubiquitously used to expose local and

remote storage devices (the latter through protocols such as

iSCSI [19]). Many storage functionalities, such as compres-

sion, deduplication, thin provisioning, encryption, erasure

coding, and replication, can also be implemented at this layer

(as is done by, for instance, Device-mapper [1], DRBD [12],

Dmdedup [33]). Since many applications either directly or

indirectly (e.g., through a file system) rely on block devices

for storing data, storage solutions that provide a block device

interface are transparently and widely applicable.

For a storage system to expose a block device interface, it

must implement a block device driver. Although these reside

https://doi.org/10.1145/3456727.3463768
https://doi.org/10.1145/3456727.3463768
https://doi.org/10.1145/3456727.3463768
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3456727.3463768&domain=pdf&date_stamp=2021-06-14

SYSTOR ’21, June 14–16, 2021, Haifa, Israel A. Faria et al.

in the kernel, it is possible to delegate their development to

user space by exploiting Network Block Device (NBD) [2],

which provides access to remote storage devices through a

local block device, or using Target Core Module in User space

(TCMU) [9], which enables the implementation of custom

SCSI targets in user space. However, unlike FUSE, whose

performance has been extensively studied [29, 32, 36], these

approaches have never been throughly evaluated.

Thus, as a first contribution, we describe the architec-

ture and characterize the performance of four Linux frame-

works that enable the development of block device drivers

in user space: BUSE [6], nbdcpp [5], nbdkit [14], and tcmu-

runner [16]. We find that, although existing solutions can

maintain good performance under highly-batched or lower-

throughput workloads, they incur significant overhead on

both throughput and latency when under higher load. More-

over, they significantly increase CPU utilization under many

workloads. We argue that a categorical solution for the user-

level development of block device drivers should not hinge

on protocols for remote storage access or storage stacks de-

signed for other purposes, and that a clean-slate approach

can unlock new optimizations and improvements.

Therefore, as a second contribution, we propose BDUS, a

framework built specifically to enable the user-level develop-

ment of block device drivers, and provide a fully-functional

implementation for Linux. Its design strives to curtail mem-

ory copies and system calls, and unlike previous solutions it

does not rely on protocols for remote storage access or on the

SCSI stack. It also enables straightforward deployment of de-

vices, and easy replacement of running drivers and recovery

of failed drivers with no downtime. Further, evaluation of this

framework shows that it consistently incurs less overhead on

both throughput and latency than existing solutions, while

consuming less CPU resources. BDUS is available as an open-

source project at https://github.com/albertofaria/bdus.
In more detail, BDUS and the aforementioned frameworks

are evaluated under a total of 41 micro and macro work-

loads operating both directly on block devices and on block

device-backed file systems. Experiments are conducted un-

der consumer-grade SATA SSDs installed in commodity ma-

chines and under enterprise NVMe SSDs installed in many-

core server systems.

File system stacks featuring BDUS are further shown to

outperform stacks that employ the FUSE framework. This

is particularly evident under metadata-intensive workloads,

where FUSE can increase latencies by an order of magnitude.

Together with the fact that solutions exposing a block de-

vice interface are more widely applicable, and considering

that this abstraction is notably simpler than the POSIX file

system interface, these results affirm that BDUS is also a

valuable tool for developing storage functionalities that may

be constructed at both the block and file system layers.

2 USER-SPACE BLOCK DEVICE DRIVERS
We begin here by overviewing the block device interface and

its internals under Linux, and then describe existing solutions

for the user-level development of block device drivers.

2.1 Block devices
The block device interface is an abstraction present in Unix-

based systems that provides access to storage devices and

systems that transfer randomly accessible data in fixed-size

blocks, presenting data as a contiguous byte sequence of

predetermined size. Block devices can be used by operating

systems services, such as file systems and paging, or directly

by user-level applications through block special files typi-

cally made available under the /dev directory. In either case,

clients operate on a block device by submitting requests to

its driver, which implements the device’s behavior. Requests

can be of several types, three of which we describe here.

Themost basic types of request are read andwrite, which

allow clients to retrieve and store data at specific offsets in

the device. The offset and size of all requests served by a

block device must be aligned to its logical block size, the
smallest size that the driver is capable of addressing.

The page cache, which caches data read from files and acts

as a write-back cache for writes, applies to block devices.

Thus, read requests submitted by clients may be served

without intervention of the block device driver, and write

requests may be delayed and coalesced. This has potential

performance benefits and also enables applications to submit

requests that are not aligned to the device’s logical block size.

Applications may nevertheless open block special files with

the O_DIRECT flag to bypass this cache.

Block devices themselves may also feature internal write-

back caches to improve performance, as is the case with

many HDDs and SSDs. write requests submitted by clients

may thus be completed before the written data is persisted,

even if the page cache is not being used. To ensure that

written data is persistently stored and will survive crashes,

clients may submit a flush request.

Most drivers do not receive requests directly from clients.

Instead, requests are first inserted into a per-core or per-

NUMA node software staging queue, in which they may be

reordered andmerged prior to beingmoved to one of possibly

several hardware dispatch queues, where they remain until

serviced and completed by the driver [18].

2.2 Network Block Device
Although block device drivers reside in the operating sys-

tem kernel, it is currently possible to exploit Network Block

Device (NBD) [2], which provides access to remote storage

devices through the block device interface, to effectively im-

plement them in user space. NBD consists of (i) an in-kernel

https://github.com/albertofaria/bdus

BDUS: Implementing Block Devices in User Space SYSTOR ’21, June 14–16, 2021, Haifa, Israel

client implementing a block device driver and (ii) a user-level

server. Requests submitted to an NBD device are transmitted

through a socket to the corresponding server, which then

serves them from a local device. Thus, by building a server

with custom request processing logic and deploying it in the

same host as the client, one can effectively implement a block

device driver in user space. Moreover, NBD can make use of

Unix domain sockets instead of TCP sockets for its communi-

cation protocol, with the intent of improving the efficiency of

such single-host deployments [2]. However, sockets always

impose an extraneous memory copy to a kernel buffer of

data transferred between client and server.

The BUSE [6], nbdcpp [5], and nbdkit [14] frameworks

enable the creation of said custom NBD servers. BUSE in par-

ticular has the specific objective of enabling the development

of user-level block device drivers, encapsulating the step of

binding the client and server components that would other-

wise be performed by the user. Servers built using nbdkit can

process requests concurrently, and allow the client driver to

establish several connections to parallelize request submis-

sion. In contrast, BUSE and nbdcpp are limited to processing

requests sequentially through a single connection.

2.3 Target Core Module in User space
The SCSI storage protocol revolves around the concepts of a

target—a service capable of handling SCSI commands—and

an initiator—a client that submits such commands. Target

Core Module (TCM) [15] is an in-kernel, Linux SCSI target

consisting of (i) a backstore layer and (ii) a fabric layer. Back-
stores handle SCSI commands according to their specific

implementation, such as by submitting them to a local SCSI

device or serving data from a volatile RAM disk. Fabrics

expose backstores to initiators through some particular pro-

tocol, such as iSCSI [19]. A loopback fabric is also provided,

which exposes a backstore directly as a local block device.

TCM in User space (TCMU) [9] is a TCMbackstore that del-

egates processing of SCSI commands to a user-level process.

Communication between kernel and user space is accom-

plished through the UIO framework [10]. The tcmu-runner

toolkit [16] encapsulates the user-level code associated with

this mechanism, allowing the developer simply to define the

logic to process each type of request.

By developing and instantiating a custom TCM backstore

using tcmu-runner, and by exposing it locally as a block

device using the loopback fabric, one can effectively use this

infrastructure to develop block device drivers in user space.

3 BDUS: A FIRST LOOK
Our evaluation of the user-level block device driver devel-

opment solutions described above, the results of which are

presented in §6, shows that they incur significant overhead

on throughput, latency, and CPU utilization under several

workloads. Moreover, their dependence on the NBD protocol

and Linux’s SCSI target restricts possible improvements and

optimizations. This prompted us to develop BDUS, a frame-

work built from scratch to enable the implementation of

block device drivers in user space. This section presents and

explains the main functionalities provided by BDUS. Then,

in §4, we detail BDUS’ design and implementation.

Driver development interface. Using BDUS, block device

drivers can be implemented as regular user-space applica-

tions. The driver development interface is provided by the

libbdus library, a component of BDUS written in C99. To

make a device available, a driver application invokes the

bdus_run() function, which receives a value of type struct
bdus_ops and another of type struct bdus_attrs.
In the first, the driver can specify pointers to functions

that handle each type of block device request. As long as

block device semantics are respected, these functions can be

implemented in any desired manner (e.g., by accessing a re-

mote storage system, or reading and storing encrypted data

on an underlying device). Drivers can also specify a func-

tion for handling custom ioctl() commands. If no handler

for flush requests is given, the driver is assumed to only

complete write requests after data is persistently stored.

For other request types, by not specifying the respective

function, the driver declares that it does not support them.

In the value of type struct bdus_attrs, the driver speci-
fies the size and logical block size of the device, and optionally

other attributes such as the maximum size of each type of

request and the maximum number of threads that libbdus
may employ when invoking request processing functions.

Device creation and destruction. When a driver is executed

and invokes bdus_run(), BDUS creates a new device, assigns

it a numerical identifier, and adds a block special file under

/dev that refers to it (e.g., /dev/bdus-0, for identifier 0).
From there on, whenever a request reaches the device, BDUS

invokes the appropriate driver function to process it.

The bdus command-line tool can be used to destroy a

device and terminate its driver. When, for instance, bdus
destroy /dev/bdus-0 is run, BDUS (i) submits a flush re-

quest to the device, (ii) instructs the device’s driver to termi-

nate, at which point bdus_run() returns, and (iii) destroys

the device and removes the associated block special file. A

device is also automatically destroyed if the driver terminates

abnormally (e.g., by crashing).

Driver replacement and recovery. BDUS allows the driver
of a device to be replaced without interruption of service,

i.e., without failing to handle any request. This can be use-

ful to upgrade or reconfigure drivers of systems with strict

availability requirements. To do this, the new driver can

use the bdus_rerun() function, which behaves much like

SYSTOR ’21, June 14–16, 2021, Haifa, Israel A. Faria et al.

bdus_run() but also accepts the identifier of an existing de-

vice. When called, BDUS flushes the specified device and

terminates its current driver gracefully (as if through bdus
destroy), but attaches the new driver to the device with-

out destroying it. The new driver then begins processing

requests as normal, and BDUS ensures that every request is

handled by either the previous or the new driver.

A driver may also declare itself to be recoverable, in which

case BDUS does not destroy its device if the driver termi-

nates abnormally. Another driver may then attach to the

existing device using the bdus_rerun() function. Requests

not completed by the failed driver or submitted while there is

no attached driver do not immediately fail, but instead block

until a new driver is attached and processes them or until a

configurable timeout elapses. Thus, if a driver is relaunched

sufficiently quickly (e.g., by a supervisor process), the device

can recover transparently from its failure, without failing to

handle any request. This feature is useful for deployments

with stringent reliability and fault tolerance requirements.

4 BDUS: DESIGN AND IMPLEMENTATION
In the following, we detail BDUS’ architecture, the device life

cycle and how the driver replacement and recovery features

are implemented, and the path taken by requests from their

submission by a client to their handling by a user-level driver.

4.1 Architecture
As illustrated in Figure 1, BDUS consists of two main compo-

nents: (i) the kbdus kernel module and (ii) the libbdus user-
space library. libbdus relies on kbdus, and all communication

between the two is accomplished through a character device
created by kbdus and accessible via the /dev/bdus-control
character special file. A third component, the bdus command-

line tool (not shown in the figure), provides device manage-

ment functionalities. It relies on libbdus, which offers the

same functionalities programmatically.

The libbdus library provides a C99 interface, and bindings

for other languages can be developed as libraries that rely on

libbdus or that communicate directly with the kbdus module.

4.2 Device life cycle
A driver developed using BDUS creates a new device by

invoking libbdus’ bdus_run() function. When this occurs,

libbdus first opens /dev/bdus-control. Then, it performs

an ioctl() call on the resulting file description with the

CREATE_DEV command. The configuration for the device is

given as an argument to this command, and includes at-

tributes specified by the driver in struct bdus_attrs and
the set of supported request types. kbdus then validates this

configuration, creates a new device, associates the aforemen-

tioned file description with it, and returns control to libbdus.

kb
du

s Device 0

Pa
ge

 c
ac

he

Kernel
client

/dev/bdus-control /dev/bdus-0

Client
application

software staging queue(s)
hardware dispatch queue

control inversion queue

lib
bd

us Worker thread
data buffer

Driver

K
er
ne
l

U
se
r

read() ...write()

➀ ➇

➃ ➂
➁ ➀

➇

➆➄

➅

Figure 1: BDUS’ architecture. Arrows show the path taken

by read requests submitted by user-level or kernel clients.

From this point on, libbdus continually retrieves requests

through the same file description until it receives an indi-

cation to terminate. This mechanism and the path taken by

requests, from when they are submitted by clients to when

they are processed by the driver, are detailed further ahead.

When the driver is prompted to terminate, libbdus (i) in-
structs it to perform any necessary cleanup, (ii) performs

an ioctl() with command SET_SUCCESSFUL on the afore-

mentioned file description, and (iii) closes it, causing kbdus
to destroy the device. The second step is relevant for recov-

erable drivers: if the driver crashes, the file description is

implicitly closed without performing that step, in which case

kbdus does not destroy the device but leaves it without a dri-

ver, allowing another to later attach to it. If a non-recoverable

driver crashes, kbdus always destroys its device.
The procedure followed by bdus_rerun() is similar, with

the exception that it performs the ioctl() call with com-

mand ATTACH_TO_DEV. Like CREATE_DEV, it takes as an ar-

gument the configuration for a device, and additionally the

identifier of the device to attach to. kbdus then ensures that

the given configuration is compatible with the existing de-

vice. Next, if the device already has a driver attached to it,

kbdus submits a flush request to that driver and instructs it

to terminate. Once it does, or if no driver is attached to the

device, kbdus associates with it the file description on which

ioctl() was called and finally returns control to libbdus.

4.3 Request path
We now detail the path taken by requests submitted to block

devices created by BDUS. For concreteness, we consider the

steps taken by a read request generated by an application,

BDUS: Implementing Block Devices in User Space SYSTOR ’21, June 14–16, 2021, Haifa, Israel

as illustrated by the arrows in Figure 1 and identified with

circled numbers. However, apart from different interactions

with the page cache and direction of data transfers, requests

follow the same sequence of steps regardless of their type.

First, an application performs a read() on the block spe-

cial file of a BDUS device (e.g., /dev/bdus-0), generating a
read request (➀). If the client does not bypass the page cache

and it contains the requested data, the request is served from

that cache, otherwise it is submitted to the device’s software

staging queue for the current core or NUMA node (➁).

After possible merging and reordering by the block sched-

uler configured for the device (if any), the request is moved

to the device’s single hardware dispatch queue, where it re-

mains until completed, and the Linux kernel prompts kbdus
to process it (➂). Since the decision of when to move and

begin processing a request is made by the Linux kernel, and

because kbdus must wait for libbdus to be ready to receive

it, a reference to the request is then inserted into a control
inversion queue to be later retrieved by libbdus (➃).

One of libbdus’ worker threads performs an ioctl() on
/dev/bdus-control with command TRANSFER, prompting

kbdus to send the request at the head of the control inversion
queue (➄). The worker thread delegates processing of the

request to the appropriate driver-specified function, which

fills in a per-thread buffer with the requested data according

to the driver’s own logic and returns a success indicator (➅).
1

The worker thread performs another ioctl() with com-

mand TRANSFER, informing kbdus of the request’s comple-

tion and blocking until the next request is received (➆). Fi-

nally, kbdus copies the data in the thread’s buffer to its final

location (or to the page cache, if not bypassed) and informs

the Linux kernel that the corresponding request in the hard-

ware queue is completed, which in turn notifies the client (➇).

In closing, we note that BDUS strives to minimize data

copying between the client, kernel components, and user-

level driver, as such operations can have a significant impact

on performance and CPU utilization. Specifically, requests

and replies are copied directly between the clients’ buffers

and libbdus’ per-worker thread buffers. Further, by both

submitting a reply and retrieving the next request with a

single TRANSFER command, BDUS reduces the number of

system calls required to process a request to only one.

5 METHODOLOGY
Having discussed the architecture of existing frameworks

and BDUS’ design and implementation, we now detail the

methodology used to conduct their performance evaluation.

Evaluated systems. First, resorting to BUSE, nbdcpp, nbd-

kit, tcmu-runner, and BDUS, we developed pass-through

1kbdus fully validates all interactions with the user-level driver, which can-

not directly access any kernel structures or memory from other processes.

block device drivers that simply redirect requests to an un-

derlying block device (using direct I/O to avoid redundant

caching) corresponding to a dedicated partition in a physical

storage device. The nbdkit device was implemented as a C

plugin and configured with 16 connections (truncated to the

number of logical cores in the system) and 16 threads per con-

nection (nbdkit cannot share threads among connections).

Since BUSE and nbdcpp are single-threaded, they employed

a single connection. In all cases, connections were estab-

lished through Unix domain sockets. The TCMU device was

implemented as a custom tcmu-runner handler employing

16 threads and exposed using the loopback fabric. The BDUS

device was similarly set up with 16 worker threads.

We then evaluated the performance of both the underlying

device and of each pass-through device under a variety of

workloads, allowing us to measure the overhead imposed by

each framework. Experiments were conducted on consumer-

grade SATA SSDs installed in commodity machines and on

enterprise NVMe SSDs in many-core server systems. All

pass-through devices were configured without a block sched-

uler and the underlying device with its default scheduler

(mq-deadline for SATA SSDs and none for NVMe SSDs).

Block device workloads. With the first of two groups of

workloads, we evaluated the performance of operating di-

rectly on both the underlying block device and on each of

the pass-through devices. These workloads employ either 1

or 16 threads, each reading or writing, sequentially or ran-

domly, in blocks of 4 or 128 KiB, for at most 15 minutes. They

operate on the first 64 GiB of the device on SATA SSDs and

on the first 256 GiB on NVMe SSDs, with each workload

thread performing I/O on a dedicated subrange of that area.

We use the following mnemonics to identify these work-

loads: seq and rand stand for sequential and random; Xth
specifies that the workload employs X threads; and Yk in-

dicates that I/O is performed in Y KiB blocks. For instance,

workload seq-write-16th-4k employs 16 threads, each writing

4 KiB blocks sequentially. The fio [11] benchmarking tool

was used to perform these workloads. Caches were purged

in between runs, and the underlying partition was zero-filled

before read workloads and trimmed before write workloads.

File system workloads. With the second group of work-

loads, we evaluated the performance of operating on file

systems residing both in the underlying block device and in

each of the pass-through devices. Additionally, we evaluated

the performance of operating on a FUSE pass-through file

system
2
that simply redirects requests to another file sys-

tem backed by the underlying hardware device, allowing us

to measure the overhead imposed by the FUSE framework.

2
We employed the passthrough_hp.cc example driver, “intended to be as

efficient and correct as possible,” from the FUSE user-space library: https:

//github.com/libfuse/libfuse/blob/fuse-3.9.3/example/passthrough_hp.cc

https://github.com/libfuse/libfuse/blob/fuse-3.9.3/example/passthrough_hp.cc
https://github.com/libfuse/libfuse/blob/fuse-3.9.3/example/passthrough_hp.cc

SYSTOR ’21, June 14–16, 2021, Haifa, Israel A. Faria et al.

This is instructive as several storage functionalities such as

compression, deduplication, thin provisioning, encryption,

erasure coding, and replication may be implemented at both

the block layer and the file system layer. In all cases, ext4 [28]

was employed as the block device-backed file system due to

its widespread use, and its lazy inode table and journal ini-

tialization features were disabled to improve result stability.

The file system workloads are divided into three classes:

(i) data-intensive micro workloads perform I/O operations on

one or more files and are otherwise identical to the block

device workloads described previously, with each thread

operating on a separate file; (ii) metadata-intensive micro
workloads either create, read, or delete many 4 KiB files,

employing 1 or 16 threads, and run for at most 15 minutes;

(iii) macro workloads emulate a file server with 50 threads,

a mail server with 16 threads, and a web server with 100

threads, all running for 60 minutes, and were taken from a

previous study of FUSE’s performance [36]. All workloads

were performed by the Filebench [8, 34] tool. Caches were

purged and the ext4 file system recreated in between runs.

Instrumentation and collected metrics. In addition to fio

and Filebench, we used iostat [17] to observe CPU utilization

and monitor several request processing-related metrics to

aid analysis. All tools were configured to report performance

and resource utilization every 5 seconds, and we consider

only observations taken after the systems had reached steady

state by manually discarding those in the warm up period.

Statistical method. We performed a minimum of 5 runs for

each combination of underlying storage device, evaluated

system, and workload. For each such group of benchmarking

runs, the sample mean of each collected metric was calcu-

lated (disregarding warm up periods as described above) and

Student’s t-distribution was used to compute the 95% con-

fidence intervals for the corresponding population means.

Values presented later correspond to the aforementioned

sample means, and the half widths of the respective con-

fidence intervals are, unless otherwise stated, under 5% of

the sample mean for throughput and latency, and under 5

percent points of the sample mean for CPU utilization.

Experimental environment. To evaluate performance under

SATA SSDs, we used several identical machines with: one

Intel Core i3-4170 CPU, with 4 threads; one 119 GiB, SATA-III,

Samsung MZ7LN128 SSD. Performance under NVMe SSDs

was evaluated using a machine with: two Intel Xeon Gold

6240 CPUs, each with 36 threads; one 1.46 TiB, NVMe, Dell

Express Flash PM1725b SSD. Available RAM was limited to

4 GiB in all machines to accelerate cache warm up.

All systems were identically set up with Ubuntu Server

20.04.1 LTS and Linux kernel 5.8.9, and the following soft-

ware packages were employed: NBD 3.20 [2], BUSE commit

#b4a7f53 [6], nbdcpp commit #908f6b6 [5], nbdkit 1.22.1 [14],

tcmu-runner 1.5.2 [16], BDUS 0.1.0, libfuse 3.9.3 [13], fio

3.23 [11], Filebench commit #22620e6 [8], iostat 12.4.0 [17].

6 EVALUATION
We now present the results obtained under both groups of

workloads, and then discuss and summarize our findings.

6.1 Block device workloads
The throughput, latency, and CPU utilization achieved by

the evaluated systems under block device workloads are

presented in Table 1, each column corresponding to a com-

bination of metric and system, and each row to a pairing of

storage device and workload. Columns titled “Native” per-

tain to the setup in which workloads are performed directly

on the underlying device. The nbdcpp framework never sur-

passes BUSE’s performance, and as such is omitted. Cells for

systems other than Native are colored according to their val-

ues (darker is worse), in particular with a white background

if they show improvements of over 5% (throughput and la-

tency) or 5 percent points (CPU utilization) over Native.

We begin by noting that the two storage device types give

rise to distinct results. This is due to the NVMe device’s

higher absolute performance, as seen in the throughput and

latency results for system Native. Additionally, the overhead

on CPU utilization is generally of lower magnitude for exper-

iments conducted on the NVMe device. This is because the

system in which that device is installed provides 72 logical

cores, while the machines containing SATA devices provide

only 4, and CPU utilization is measured from 0% to 100%.

Regarding workloads seq-read-1th-Xk on SATA devices,

we first observe that BUSE and nbdkit decrease throughput

by between 16.7% and 21.4% (latency is affected reciprocally

since these workloads are single threaded and closed loop),

while TCMU and BDUS incur no perceptible overhead. On

NVMe devices, BUSE, nbdkit, and TCMU decrease through-

put by between 28.4% and 67.8%, and BDUS by at most 18.9%.

Here, the difference in performance between BUSE and the

remaining systems is explained by the operating system’s

read ahead optimization, which preemptively reads data that

is likely to be requested next by the client. Even though these

workloads are single threaded, this results in the concurrent

submission of several read requests, which BUSE cannot

leverage due to being unable to process requests in parallel.

Under workloads seq-read-16th-Xk, nbdkit and BDUS do

not impose any noticeable overhead on both storage device

types, and TCMU degrades throughput (latency) only on

NVMe by at most 15.5% (18.6%). In contrast, BUSE lowers

throughput by up to 44.4% on SATA and 85.9% on NVMe, pre-

cisely due to only handling requests sequentially. Note that

when compared to Native, BUSE decreases CPU utilization

on NVMe due its significant overhead on throughput.

BDUS: Implementing Block Devices in User Space SYSTOR ’21, June 14–16, 2021, Haifa, Israel

Throughput (kop/s) Latency (µs/op) CPU utilization (%)

N
a
t
i
v
e

B
U
S
E

n
b
d
k
i
t

T
C
M
U

B
D
U
S

N
a
t
i
v
e

B
U
S
E

n
b
d
k
i
t

T
C
M
U

B
D
U
S

N
a
t
i
v
e

B
U
S
E

n
b
d
k
i
t

T
C
M
U

B
D
U
S

S
A
T
A

s
e
q
-
r
e
a
d

1th-4k 133.18 -21.4 -16.9 -0.3 -0.5 7.31 +28.0 +20.8 -0.2 +0.3 9 +4 +7 +5 +2

1th-128k 4.15 -21.0 -16.7 -0.4 -0.2 240.31 +26.7 +20.1 +0.4 +0.2 7 +2 +6 +3 +1

16th-4k 135.13 -43.8 +0.2 +0.2 +0.2 118.21 +78.2 -0.2 -0.2 -0.2 9 +1 +10 +5 +3

16th-128k 4.22 -44.4 +0.2 +0.2 +0.2 3790.68 +79.8 -0.2 -0.2 -0.2 6 +2 +10 +5 +4

r
a
n
d
-
r
e
a
d 1th-4k 9.84 -19.1 -30.7 -29.7 -12.6 100.88 +23.6 +43.8 +42.0 +14.3 3 +5 +9 +7 +2

1th-128k 2.23 -11.7 -19.1 -17.3 -10.4 446.77 +13.4 +23.7 +21.0 +11.6 4 +5 +8 +4 +4

16th-4k 88.05 -89.2 -28.6 -70.9 -11.2 180.97 +833.0 +38.7 +243.9 +12.3 24 -17 +65 +67 +45

16th-128k 4.19 -43.3 +0.3 +0.4 +0.2 3814.47 +76.4 -0.3 -0.4 -0.2 7 +2 +11 +7 +4

s
e
q
-
w
r
i
t
e 1th-4k 37.92 -1.3 +0.6 -0.3 0.0 26.19 +1.2 -0.7 +0.3 0.0 1 +14 +5 +2 +2

1th-128k 1.19 -0.7 +0.6 -0.1 0.0 843.81 +0.6 -0.6 +0.1 -0.1 1 +14 +5 +2 +2

16th-4k 37.96 -0.7 +0.5 -0.3 +0.1 421.29 +0.7 -0.5 +0.3 -0.1 1 +14 +4 +2 +1

16th-128k 1.19 -1.0 +0.7 -0.2 0.0 13486.57 +1.0 -0.8 +0.2 0.0 1 +13 +4 +2 +1

r
a
n
d
-
w
r
i
t
e 1th-4k 38.06 -26.6 +0.3 -2.6 0.0 25.93 +36.3 -1.1 +2.2 -0.2 4 +20 +31 +34 +14

1th-128k 1.19 -1.1 +0.6 0.0 +0.1 842.74 +1.1 -0.6 0.0 -0.1 1 +13 +4 +2 +2

16th-4k 38.01 -25.3 +0.7 -1.6 0.0 420.62 +33.8 -0.8 +1.6 0.0 4 +21 +30 +29 +14

16th-128k 1.19 -0.8 +0.6 -0.2 +0.2 13506.25 +0.8 -0.6 +0.2 -0.2 1 +13 +4 +2 +1

N
V
M
e

s
e
q
-
r
e
a
d

1th-4k 332.24 -64.8 -28.4 -33.5 -16.4 2.82 +194.0 +43.3 +52.5 +21.6 2 0 +1 0 0

1th-128k 11.25 -67.8 -30.5 -34.8 -18.9 88.59 +210.7 +44.0 +53.4 +23.4 2 0 +1 0 0

16th-4k 822.17 -85.9 -2.2 -15.5 +1.6 19.09 +620.3 +2.3 +18.6 -2.0 11 -8 +10 +2 +2

16th-128k 25.38 -85.7 -2.3 -14.3 +2.4 629.16 +602.6 +2.5 +16.7 -2.5 10 -8 +10 +3 +1

r
a
n
d
-
r
e
a
d 1th-4k 10.49 -24.7 -42.7 -58.0 -18.2 94.06 +33.3 +75.4 +139.8 +22.7 0 0 +1 0 0

1th-128k 3.32 -33.9 -39.8 -42.4 -21.8 300.19 +51.7 +66.4 +73.7 +28.0 1 0 0 0 0

16th-4k 146.20 -93.3 -42.1 -38.7 -28.5 107.87 +1403.4 +73.4 +63.9 +40.6 4 -3 +10 +5 +6

16th-128k 23.80 -84.7 -13.4 -41.6 -2.5 670.74 +556.5 +15.4 +71.3 +2.4 9 -7 +7 +2 +2

s
e
q
-
w
r
i
t
e 1th-4k 407.41 -76.2 -79.6 -13.3 -13.7 2.30 +338.4 +411.0 +15.9 +16.8 3 +1 +1 +2 +2

1th-128k 13.38 -77.4 -80.7 -3.4 -5.2 74.53 +346.8 +418.2 +3.4 +5.6 3 +1 +1 +2 +3

16th-4k 402.29 -71.7 -79.3 -28.9 -19.9 39.38 +256.9 +387.8 +42.8 +27.9 7 -3 -4 0 +6

16th-128k 12.72 -72.9 -80.4 -26.1 -11.3 1256.59 +271.9 +413.0 +37.6 +15.9 7 -3 -4 0 +7

r
a
n
d
-
w
r
i
t
e 1th-4k 282.71 -87.0 -89.0 -53.8 -38.4 3.25 +735.0 +871.9 +129.1 +67.6 3 -1 +1 +5 +6

1th-128k 13.36 -72.6 -80.5 -5.0 -8.6 74.53 +269.8 +414.3 +5.1 +9.4 3 +1 +1 +2 +3

16th-4k 227.56 -83.0 -85.7 -34.2 -34.4 69.84 +504.3 +608.4 +58.6 +55.3 16 -14 -11 -7 -2

16th-128k 13.04 -72.8 -80.9 -31.6 -24.6 1225.79 +270.6 +427.2 +47.8 +34.8 7 -3 -3 +1 +4

Table 1: Block device workload results. Columns “Native” show absolute values; other columns show the relative difference

as a percentage (for throughput and latency) or the absolute difference in percent points (for CPU utilization) against Native.

Under rand-read-1th-Xk, BUSE, nbdkit, and TCMU de-

crease throughput on SATA by up to 30.7%, and BDUS by

at most 12.6%. Under rand-read-16th-Xk, BUSE degrades

throughput (latency) against Native by up to 89.2% (833.0%),

as the workloads are multi-threaded. Results for all systems

under rand-read-Xth-Yk follow a similar trend on NVMe,

with the exception of TCMU outperforming nbdkit under

rand-read-16th-4k (but imposing more overhead than BDUS).

Under write workloads on SATA devices, nbdkit, TCMU,

and BDUS have no perceptible impact on throughput and

latency, due to asynchronous batching of write requests

by the page cache, and BUSE incurs overhead only under

rand-write-Xth-4k, degrading throughput by up to 26.6% and

latency by up to 36.3%. Further, BDUS increases CPU utiliza-

tion only under rand-write-Xth-4k by 14 percent points (pp),

while other systems increase it by up to 34 pp.

Write workloads on NVMe exhibited higher variability un-

der all systems (including Native) than the results mentioned

so far, with confidence interval half widths being under 10%

of the sample mean for throughput and latency. We avoid

making fine-grained observations on these results, but nev-

ertheless note that TCMUmatches or outperforms BUSE and

nbdkit in throughput and latency under all such workloads,

and BDUS in turn matches or outperforms TCMU.

6.2 File system workloads
Table 2 presents the throughput, latency, and CPU utiliza-

tion attained by the systems under file system workloads

and follows the same scheme as the previous table, with an

additional column for the file system stack employing FUSE.

Data-intensivemicro workloads. Generally, results obtained
under these workloads on SATA devices are similar to those

SYSTOR ’21, June 14–16, 2021, Haifa, Israel A. Faria et al.

Throughput (kop/s) Latency (µs/op) CPU utilization (%)

N
a
t
i
v
e

B
U
S
E

n
b
d
k
i
t

T
C
M
U

B
D
U
S

F
U
S
E

N
a
t
i
v
e

B
U
S
E

n
b
d
k
i
t

T
C
M
U

B
D
U
S

F
U
S
E

N
a
t
i
v
e

B
U
S
E

n
b
d
k
i
t

T
C
M
U

B
D
U
S

F
U
S
E

S
A
T
A

s
e
q
-
r
e
a
d

1th-4k 133.01 -20.7 -2.1 0.0 +0.2 +0.1 7.52 +26.0 +2.2 0.0 -0.2 -0.1 14 +1 +15 +5 +1 +10

1th-128k 4.13 -20.8 0.0 +0.7 +0.7 +1.4 241.87 +26.2 0.0 -0.7 -0.7 -1.4 8 +3 +12 +4 +1 +7

16th-4k 133.97 -43.6 +0.3 +0.6 +0.5 +0.1 119.30 +77.4 -0.3 -0.6 -0.4 -0.2 12 0 +9 +6 +3 +10

16th-128k 4.20 -43.6 +0.2 +0.4 +0.3 0.0 3809.50 +77.4 -0.2 -0.4 -0.2 0.0 6 +3 +9 +7 +4 +12

r
a
n
d
-
r
e
a
d 1th-4k 10.34 -18.6 -31.8 -32.2 -12.3 -20.9 96.73 +22.9 +46.6 +47.5 +14.0 +26.4 3 +4 +9 +8 +2 +4

1th-128k 2.36 -10.6 -19.2 -19.4 -9.8 -19.1 423.39 +11.9 +23.8 +24.1 +10.9 +23.7 3 +5 +8 +5 +4 +5

16th-4k 89.16 -88.9 -31.4 -72.2 -13.0 -28.6 179.39 +798.4 +45.9 +259.9 +15.0 +40.0 39 -31 +52 +51 +37 +46

16th-128k 4.40 -43.5 +0.2 +0.2 +0.3 -2.1 3630.68 +76.9 -0.2 -0.2 -0.3 +2.2 7 +2 +11 +7 +4 +12

s
e
q
-
w
r
i
t
e 1th-4k 36.59 +1.5 +1.6 +2.5 +0.9 -0.3 26.85 +0.3 0.0 -1.1 +0.3 -0.1 1 +4 +4 +2 +1 +7

1th-128k 1.14 +1.3 +1.4 +2.5 +0.9 -0.4 859.00 +0.4 0.0 -1.0 +0.3 -0.1 1 +4 +3 +2 +1 +5

16th-4k 36.51 +1.4 +1.7 +3.1 +0.7 +0.7 431.78 0.0 -0.4 -1.9 +0.2 -0.4 1 +3 +3 +2 +1 +6

16th-128k 1.14 +1.5 +1.6 +2.8 +0.9 +0.6 13797.02 +0.1 -0.1 -1.6 +0.2 -0.2 1 +3 +3 +2 +1 +4

r
a
n
d
-
w
r
i
t
e 1th-4k 37.81 -21.2 +0.4 -6.1 -0.4 -0.3 26.45 +26.9 -0.4 +6.5 +0.4 +0.3 5 +13 +33 +50 +17 +21

1th-128k 1.17 +0.3 +0.5 +1.5 +0.1 +0.4 850.82 0.0 -0.5 -1.5 0.0 -0.5 1 +4 +4 +2 +1 +4

16th-4k 37.55 -19.5 +0.4 -4.4 -0.4 +0.5 426.00 +24.2 -0.4 +4.5 +0.4 -0.5 5 +14 +30 +45 +15 +24

16th-128k 1.17 +0.3 0.0 +2.0 -0.1 +0.7 13659.25 0.0 +0.1 -1.9 +0.2 -0.6 1 +3 +3 +2 +1 +2

create-1th 22.71 +7.8 +2.6 +1.5 -0.7 -73.2 44.03 -7.2 -2.5 -1.5 +0.7 +273.3 21 +5 +4 +2 +1 +11

create-16th 24.70 +3.7 +4.8 +3.9 +1.1 -59.2 595.39 -4.9 -2.3 -2.2 -0.4 +164.0 50 -3 -1 -1 -1 +9

read-1th 16.80 -28.8 -29.6 -31.1 -16.8 -49.9 59.54 +40.4 +42.1 +45.0 +20.1 +99.7 6 +6 +10 +9 +5 +13

read-16th 44.91 -65.5 -17.6 -30.5 -6.8 -44.6 345.17 +198.1 +17.6 +45.5 +6.3 +84.6 25 -13 +21 +23 +9 +25

delete-1th 15.78 -10.7 -6.8 -5.0 -2.3 -50.2 63.41 +12.4 +7.5 +5.3 +2.5 +100.6 9 +8 +9 +8 +4 +18

delete-16th 16.92 -15.1 -3.2 -3.7 -0.9 -48.4 900.88 +20.2 +3.9 +5.2 +1.8 +100.0 21 +5 +9 +7 +4 +15

file-server 7.71 -42.4 -20.5 -24.0 -23.8 -5.5 5685.73 +96.0 +40.0 +47.4 +46.7 +13.4 6 +1 +5 +3 +2 +19

mail-server 3.93 +4.9 +0.6 +2.4 +1.8 -6.6 4014.08 -4.7 -0.7 -2.4 -2.0 +7.0 3 +2 +3 +3 +1 +5

web-server 63.16 -71.5 -6.9 -20.5 -4.1 -45.3 1195.56 +273.8 +0.3 +33.1 +9.8 +95.1 39 -27 +26 +20 +6 +34

N
V
M
e

s
e
q
-
r
e
a
d

1th-4k 213.51 -44.1 -34.0 -35.9 -18.1 -16.6 4.68 +79.0 +51.8 +56.0 +22.0 +19.9 1 0 +1 0 0 +2

1th-128k 7.46 -51.9 -36.8 -42.4 -20.5 -20.2 134.15 +107.8 +58.1 +73.6 +25.8 +25.4 1 0 +1 +1 0 +2

16th-4k 841.69 -86.3 -1.9 -30.9 -3.9 -1.9 19.00 +629.9 +2.0 +45.0 +4.1 +1.9 9 -6 +12 +5 +3 +9

16th-128k 26.25 -86.4 -2.4 -23.2 -3.9 -4.6 609.08 +632.4 +2.5 +30.2 +4.1 +4.9 6 -4 +12 +6 +3 +10

r
a
n
d
-
r
e
a
d 1th-4k 10.29 -27.4 -41.7 -57.2 -18.2 -57.0 97.16 +37.7 +71.6 +133.8 +22.2 +132.5 0 0 +1 +1 0 0

1th-128k 3.21 -31.3 -38.1 -41.4 -19.6 -48.0 311.49 +45.5 +61.6 +70.7 +24.4 +92.3 1 0 +1 0 0 0

16th-4k 143.39 -93.1 -43.7 -38.8 -30.1 -41.3 111.47 +1345.2 +77.7 +63.3 +43.1 +70.8 4 -3 +10 +5 +6 +9

16th-128k 24.53 -85.2 -13.4 -39.7 -4.6 -17.6 651.83 +575.7 +15.5 +65.9 +4.8 +21.3 6 -4 +9 +3 +3 +7

s
e
q
-
w
r
i
t
e 1th-4k 237.22 -7.9 -8.5 +4.3 +1.3 -64.1 4.23 +8.7 +9.2 -4.4 -1.4 +186.3 3 +1 +2 +1 +1 +1

1th-128k 11.24 -26.3 -37.8 -13.7 -14.5 -73.7 88.98 +36.1 +61.7 +16.4 +17.3 +287.8 3 +1 +2 +1 +1 +1

16th-4k 421.46 -32.4 -36.6 +1.4 +0.5 — 37.92 +48.0 +58.5 -1.4 -0.5 — 7 -1 0 +2 +1 —

16th-128k 13.17 -32.2 -32.8 +1.5 +0.4 — 1213.71 +47.5 +48.7 -1.5 -0.4 — 6 -3 -1 +2 +1 —

r
a
n
d
-
w
r
i
t
e 1th-4k 239.29 -80.8 -63.8 -23.7 -34.4 -63.5 4.18 +419.2 +177.7 +31.0 +52.5 +179.8 3 -1 +4 +6 +6 +13

1th-128k 13.22 -21.6 -38.3 -7.4 -15.9 -76.3 75.64 +27.4 +62.7 +8.1 +18.9 +351.2 2 +1 +2 +2 +3 +5

16th-4k 361.46 -87.3 -75.8 -49.3 -39.2 — 44.25 +684.6 +315.5 +97.7 +64.6 — 8 -6 -1 +2 +4 —

16th-128k 13.46 -26.4 -18.2 +0.4 +0.1 — 1187.63 +36.4 +22.3 -0.4 -0.1 — 4 -1 +2 +3 +4 —

create-1th 52.50 -4.0 -4.0 -3.4 -1.6 -90.3 19.05 +4.2 +4.2 +3.5 +1.6 +932.8 2 +1 +1 0 0 0

create-16th 65.73 -0.4 -2.5 +1.6 -0.6 -90.3 235.63 +0.3 +2.6 -1.4 +0.6 +960.9 18 -1 0 -2 -1 -15

read-1th 21.73 -47.8 -47.8 -55.7 -25.3 -75.0 46.02 +91.8 +91.9 +125.6 +33.9 +300.7 1 0 +1 0 0 +1

read-16th 136.41 -85.1 -30.6 -21.9 -17.5 -79.9 79.55 +878.8 +72.1 +45.6 +31.1 +640.2 4 -3 +7 +4 +4 +3

delete-1th 31.36 -14.5 -25.6 -3.2 -4.0 -84.8 31.90 +16.9 +34.5 +3.3 +4.3 +556.1 1 0 +1 +1 +1 +1

delete-16th 31.44 -5.9 -26.1 -3.0 -6.6 -80.2 235.72 +43.7 +68.2 +20.2 +13.6 +994.4 4 +1 0 +2 +1 -1

file-server 65.41 -80.5 -13.8 -32.2 -33.0 -40.7 616.52 +503.9 +10.8 +39.0 +42.1 +74.5 10 -7 +7 +2 0 +17

mail-server 49.08 -72.6 -41.4 -39.6 -30.3 -57.7 252.08 +301.2 +71.0 +66.6 +43.0 +151.4 5 -2 +3 +2 +2 +1

web-server 208.66 -92.0 +12.2 -25.9 -17.0 — 231.64 +1961.5 +26.2 +98.4 +42.8 — 26 -23 +1 +1 -1 —

Table 2: File system workload results. Columns “Native” show absolute values; other columns show the relative difference

as a percentage (for throughput and latency) or the absolute difference in percent points (for CPU utilization) against Native.

BDUS: Implementing Block Devices in User Space SYSTOR ’21, June 14–16, 2021, Haifa, Israel

obtained under the analogous block device workloads. FUSE

incurs overhead only under rand-read-1th-Xk and rand-read-
16th-4k, lowering throughput by between 19.1% and 28.6%

and being outperformed by BDUS.

On NVMe, results for read workloads are also akin to

those obtained under the corresponding block device work-

loads. However, write workloads exhibited less variability

than their block device counterparts, with confidence in-

terval half widths being under 5% of the sample mean for

throughput and latency. Further, the magnitude of the ob-

served overheads is lower than under the analogous block

device workloads, although results follow a similar pattern.

Under workloads seq-write-16th-Xk and rand-write-16th-
Xk on NVMe, FUSE incurred overheads of at least 99.8% on

throughput, and we omit such results from the table. Al-

though we did not observe any correctness issues in FUSE’s

operation, the fact that this only occurred with the dual-

socket system hosting the NVMe device leads us to hypothe-

size that it may be caused by an inadequacy of FUSE’s im-

plementation to the NUMA architecture or high number of

cores. Under the remaining workloads, BDUS either matches

or outperforms FUSE in achieved throughput, latency, and

CPU utilization on both SATA and NVMe devices.

Metadata-intensive micro workloads. Regarding workloads
create-Xth, we first note that the slight improvement in per-

formance exhibited by BUSE on SATA devices appears to be

due solely to result variability. Besides this, only FUSE incurs

overhead under these workloads, up to 90.3% on throughput

and 960.9% on latency on NVMe. Under read-Xth, BDUS out-
performs all other systems on SATA and NVMe, degrading

throughput and latency respectively by at most 16.8% and

20.1% on SATA, and by at most 25.3% and 33.9% on NVMe.

Lastly, under delete-Xth, nbdkit, TCMU, and BDUS degrade

latency on SATA by up to 7.5%. On NVMe, TCMU and BDUS

perform the best, increasing latency by at most 20.2%. FUSE

is the least performant system on SATA and NVMe, degrad-

ing throughput and latency by up to 84.8% and 994.4%, and

CPU utilization on SATA by up to 18 pp.

FUSE’s significant overhead under metadata-intensive

workloads stems from its need to forward many requests

relating to file metadata to the user-level driver. Since many

of these requests can be served by in-memory operations or

amount to manipulating cached data, the remaining systems

perform much less user-kernel communication.

Macro workloads. Under file-server on SATA devices, FUSE

outperforms all other pass-through systems, the former de-

grading throughput (latency) by 5.5% (13.4%) and the others

by at least 20.5% (40.0%). However, FUSE increases CPU uti-

lization by 19 pp, and the remaining systems by at most 5 pp.

Further, nbdkit is the best-performing system on NVMe, low-

ering throughput by 13.8% and increasing latency by 10.8%.

On SATA under mail-server, FUSE performs the worst,

degrading throughput by 6.6% and latency by 7.0%. OnNVMe,

all systems impose higher overhead, with BDUS performing

the best and degrading those metrics by 30.3% and 43.0%.

Under web-server on SATA, BDUS outperforms all other

systems, degrading throughput (latency) by 4.1% (9.8%) and

increasing CPU utilization by 6 pp. In particular, FUSE im-

poses overheads of 45.3%, 95.1%, and 34 pp on those metrics.

On NVMe, we omit results for FUSE as it lowered throughput

by 99.8%, likely due to the aforementioned implementation

issues. Here, nbdkit performs the best and appears to batch

requests more eagerly than Native, consequently improving

throughput by 12.2% but also degrading latency by 26.2%.

Note that on NVMe, nbdkit outperforms TCMU and BDUS

under file-server and web-server, which employ 50 and 100

threads, and the opposite occurs under mail-server, which
uses 16 threads. This is because nbdkit is configured with 16

threads per each of its 16 connections to the NBD client, for a

total of 256 threads, while TCMU and BDUS employ a total of

16 threads. Although this gives nbdkit an unfair advantage,

this configuration was used because nbdkit is unable to share

worker threads among connections, and employing a single

thread per connection would degrade its performance.

6.3 Discussion
We now briefly discuss the main findings of the evaluation.

First, the fact that BUSE is only able to process requests

sequentially hinders its performance not only under multi-

threaded workloads, but also in scenarios where optimiza-

tions applied by the operating system introduce parallelism

(e.g., read ahead). nbdkit overcomes this restriction but is

still shown to significantly degrade performance under many

workloads, while noticeably increasing CPU utilization.

A primary factor contributing to the limited performance

and higher resource utilization of NBD-based solutions is

their reliance on sockets for communication between the

kernel client and the user-space server, which necessarily

cause extraneous memory copies when transferring requests

and replies. Although TCMU sidesteps this limitation and

generally outperforms NBD-based solutions under write and

metadata-intensive workloads, its overhead is still significant

and it imposes similar CPU utilization increments.

Following a clean-slate approach and striving to reduce

memory copies and system call invocations, the BDUS frame-

work is able to outperform these systems. Concretely, out of

all systems and under all 41 workloads contemplated in the

evaluation, BDUS is only noticeably surpassed in through-

put or latency by nbdkit under file-server and web-server on
NVMe devices (due to the higher-parallelism configuration

for nbdkit that was used in the evaluation), and frequently

incurs less CPU utilization than other solutions.

SYSTOR ’21, June 14–16, 2021, Haifa, Israel A. Faria et al.

Additionally, BDUS outperforms the FUSE framework un-

der many workloads, particularly metadata-intensive ones.

This is because FUSE requires intervention of the user-level

driver to satisfy many file metadata requests, which often do

not translate into operations on the underlying block device

and can thus avoid communication with BDUS’ user-level

driver [36]. In fact, BDUS never exhibits higher CPU utiliza-

tion than FUSE, and is surpassed by it in performance only

under the file-server workload on SATA devices.

For this reason, BDUS should also be considered when

developing storage solutions that can be constructed at both

the block and file system layers (e.g., compression, dedupli-

cation, thin provisioning, encryption, replication [1, 12, 33]).

This is in addition to general advantages of development at

the block layer such as its simpler interface when compared

to that of POSIX file systems, facilitating development, and

the wider applicability of solutions exposing that interface.

7 RELATEDWORK
Contrarily to BUSE [6], nbdcpp [5], nbdkit [14], and tcmu-

runner [16], BDUS does not rely on NBD or Linux’s SCSI tar-

get and exhibits better performance and lower resource con-

sumption. ABUSE [4] is a bare-bones Linux framework that

enables the development of block device drivers in user space,

and like BDUS it uses ioctl() calls for communication be-

tween a kernel module and a user-level driver. However, it

only allows drivers to handle read and write requests, in

particular ignoring flush and discard requests indispens-

able for correct operation with many storage devices. As

this precludes the implementation of a correct pass-through

driver, and would provide the framework with an unfair per-

formance advantage, it was not included in our evaluation.

Previous works have investigated the development of user-

space device drivers in general, without a focus on storage

drivers, and evaluations failed to compare proposed solutions

with previous ones [3, 21–23, 27, 37]. We did not include any

of these systems in our evaluation as [21, 22, 27] are not

publicly available, [23, 37] are implemented for non-Unix-

based microkernel operating systems, and [3] only allows

implementing character device drivers. Conversely, BDUS

focuses on providing a user-level development interface for

block device drivers, its implementation is open source, and

its performance is compared against existing solutions.

Other works provide mechanisms for partially migrat-

ing kernel-level device drivers to user space while keeping

performance-critical code in the kernel, in an attempt to reap

the advantages of user-level drivers while avoiding most per-

formance reductions and porting costs [24, 25, 30]. Since

request processing logic is a highly performance-sensitive

part of any block device driver, it would be inadequate to

implement it in user space using these systems, and thus

they were not contemplated in our evaluation. In contrast,

BDUS achieves the performance results presented above

while transitioning all driver logic to user space.

Like BDUS, platforms that enable the development of file

systems in user space have the goal of transitioning part of

the storage stack to the user level. The FUSE framework is

currently the most prominent example of such a platform,

being used both for experimentation and for developing full-

fledged production file systems, and has been extensively

evaluated [29, 32, 36]. BDUS is complementary to said plat-

forms and features a distinct implementation, as its kernel

component interacts with the block layer instead of with the

virtual file system layer.

Finally, systems such as SPDK [40] enable direct access

from user space to certain types of storage devices, bypass-

ing the operating system’s storage stack and thus attaining

higher performance at the cost of requiring changes to appli-

cations. Orthogonally, SPDK provides facilities to implement

custom NBD servers and iSCSI [19] or NVMe-oF [38] tar-

gets. These could be used to build user-level block device

drivers, but such approaches would rely on storage stacks

designed for networked access and thus suffer from the same

performance limitations as the solutions evaluated in this

paper. BDUS is instead built specifically to enable the devel-

opment of user-space drivers, achieving higher performance

and unlocking further improvements and optimizations.

8 CONCLUSION
We describe and evaluate BUSE [6], nbdcpp [5], nbdkit [14],

and tcmu-runner [16], which enable the user-level develop-

ment of block device drivers by leveraging the NBD pro-

tocol [2] and Linux’s SCSI target [15], and find that they

incur significant overhead on throughput, latency, and CPU

utilization under several workloads.

Consequently, we present BDUS, a framework built from

the ground up for developing such drivers in user space,

and show that its open-source Linux implementation outper-

forms existing solutionswhile consuming less CPU resources.

By showing that BDUS outperforms FUSE [13] in file sys-

tem stacks, we also motivate the use of the former for the

development of storage functionalities that may be inserted

at both the block and file system layers.

BDUSmay nevertheless be further optimized. For instance,

employing multiple dispatch queues may improve the perfor-

mance of highly-parallel workloads [18]. Further, io_uring

and its polling features may help mitigate context switching

delays [7, 39]. Support for splicing [35], which transfers data

between file descriptors without copying it to user space, can

also be advantageous for drivers that can avoid inspecting

the payload of certain requests (e.g., deduplication). We leave

such improvements as future development work.

BDUS: Implementing Block Devices in User Space SYSTOR ’21, June 14–16, 2021, Haifa, Israel

REFERENCES
[1] [n.d.]. Device-mapper Resource Page. Retrieved May 3, 2021 from

https://www.sourceware.org/dm

[2] [n.d.]. Network Block Device. Retrieved May 3, 2021 from https:

//nbd.sourceforge.io

[3] 2003. FUSD - a Linux Framework for User-Space Devices. Retrieved

May 3, 2021 from http://www.circlemud.org/jelson/software/fusd

[4] 2015. naota/abuse-kmod: ABUSE: user space block device driver. Re-

trieved May 3, 2021 from https://github.com/naota/abuse-kmod

[5] 2017. dsroche/nbdcpp: Network Block Device drivers in userspace

C++. Retrieved May 3, 2021 from https://github.com/dsroche/nbdcpp

[6] 2018. acozzette/BUSE: A block device in user space for Linux. Re-

trieved May 3, 2021 from https://github.com/acozzette/BUSE

[7] 2019. Efficient IO with io_uring. Retrieved May 3, 2021 from https:

//kernel.dk/io_uring.pdf

[8] 2020. filebench/filebench: File system and storage benchmark that uses

a custom language to generate a large variety of workloads. Retrieved

May 3, 2021 from https://github.com/filebench/filebench

[9] 2020. TCM Userspace Design. Retrieved May 3, 2021 from https:

//www.kernel.org/doc/html/latest/target/tcmu-design.html

[10] 2020. The Userspace I/O HOWTO. Retrieved May 3, 2021 from

https://www.kernel.org/doc/html/latest/driver-api/uio-howto.html

[11] 2021. axboe/fio: Flexible I/O Tester. Retrieved May 3, 2021 from

https://github.com/axboe/fio

[12] 2021. DRBD. Retrieved May 3, 2021 from https://www.linbit.com/drbd

[13] 2021. libfuse/libfuse: The reference implementation of the Linux FUSE

(Filesystem in Userspace) interface. Retrieved May 3, 2021 from

https://github.com/libfuse/libfuse

[14] 2021. libguestfs/nbdkit: NBD server toolkit with stable ABI and permis-

sive license. Retrieved May 3, 2021 from https://github.com/libguestfs/

nbdkit

[15] 2021. Linux SCSI Target. Retrieved May 3, 2021 from http://linux-

iscsi.org

[16] 2021. open-iscsi/tcmu-runner: A daemon that handles the userspace

side of the LIO TCM-User backstore. Retrieved May 3, 2021 from

https://github.com/open-iscsi/tcmu-runner

[17] 2021. SYSSTAT. Retrieved May 3, 2021 from http://sebastien.godard.

pagesperso-orange.fr

[18] Matias Bjørling, Jens Axboe, David Nellans, and Philippe Bonnet. 2013.

Linux Block IO: Introducing Multi-Queue SSD Access on Multi-Core

Systems. In Proceedings of the 6th International Systems and Storage
Conference. https://doi.org/10.1145/2485732.2485740

[19] M. Chadalapaka, J. Satran, K. Meth, and D. Black. 2014. Internet Small
Computer System Interface (iSCSI) Protocol (Consolidated). RFC 7143.

Retrieved May 3, 2021 from https://tools.ietf.org/html/rfc7143

[20] Hao Chen, Xiongnan (Newman) Wu, Zhong Shao, Joshua Lockerman,

and Ronghui Gu. 2016. Toward Compositional Verification of Inter-

ruptible OS Kernels and Device Drivers. ACM SIGPLAN Notices 51, 6
(June 2016), 431–447. https://doi.org/10.1145/2980983.2908101

[21] Peter Chubb. 2004. Get More Device Drivers out of the Kernel!. In

Proceedings of the Linux Symposium, Vol. 1. 149–161.

[22] Peter Chubb. 2004. Linux Kernel Infrastructure for User-Level Device

Drivers. In Proceedings of the Linux.Conf.Au.
[23] Kevin Elphinstone and Stefan Götz. 2004. Initial Evaluation of a User-

Level Device Driver Framework. In Proceedings of the 9th Asia-Pacific
Conference on Advances in Computer Systems Architecture. 256–269.
https://doi.org/10.1007/978-3-540-30102-8_21

[24] Vinod Ganapathy, Arini Balakrishnan, Michael M. Swift, and Somesh

Jha. 2007. Microdrivers: A New Architecture for Device Drivers. In

Proceedings of the 11th USENIX Workshop on Hot Topics in Operating
Systems. Article 15, 6 pages.

[25] Vinod Ganapathy, Matthew J. Renzelmann, Arini Balakrishnan,

Michael M. Swift, and Somesh Jha. 2008. The Design and Implemen-

tation of Microdrivers. ACM SIGOPS Operating Systems Review 42, 2

(March 2008), 168–178. https://doi.org/10.1145/1353535.1346303

[26] Vasileios P. Kemerlis, Georgios Portokalidis, and Angelos D. Keromytis.

2012. kGuard: Lightweight Kernel Protection against Return-to-user

Attacks. In Proceedings of the 21st USENIX Security Symposium. 459–

474.

[27] Ben Leslie, Peter Chubb, Nicholas Fitzroy-Dale, Stefan Götz, Charles

Gray, Luke Macpherson, Daniel Potts, Yue-Ting Shen, Kevin Elphin-

stone, and Gernot Heiser. 2005. User-Level Device Drivers: Achieved

Performance. Journal of Computer Science and Technology 20, 5 (Sept.

2005), 654–664. https://doi.org/10.1007/s11390-005-0654-4

[28] Avantika Mathur, Mingming Cao, Suparna Bhattacharya, Andreas

Dilger, Alex Tomas, and Laurent Vivier. 2007. The new ext4 filesystem:

current status and future plans. In Proceedings of the Linux Symposium,

Vol. 2. 21–33.

[29] Aditya Rajgarhia and Ashish Gehani. 2010. Performance and Extension

of User Space File Systems. In Proceedings of the 25th ACM Sympo-
sium on Applied Computing. 206–213. https://doi.org/10.1145/1774088.

1774130

[30] Matthew J Renzelmann and Michael M Swift. 2009. Decaf: Moving

Device Drivers to a Modern Language. In Proceedings of the USENIX
Annual Technical Conference.

[31] Michael F. Spear, Tom Roeder, Orion Hodson, Galen C. Hunt, and

Steven Levi. 2006. Solving the Starting Problem: Device Drivers As

Self-describing Artifacts. ACM SIGOPS Operating Systems Review 40, 4

(April 2006), 45–57. https://doi.org/10.1145/1218063.1217941

[32] Vasily Tarasov, Abhishek Gupta, Kumar Sourav, Sagar Trehan, and

Erez Zadok. 2015. Terra Incognita: On the Practicality of User-Space

File Systems. In Proceedings of the 7th USENIX Workshop on Hot Topics
in Storage and File Systems.

[33] Vasily Tarasov, Deepak Jain, Geoff Kuenning, Sonam Mandal,

Karthikeyani Palanisami, Philip Shilane, Sagar Trehan, and Erez Zadok.

2014. Dmdedup: Device Mapper Target for Data Deduplication. In

Proceedings of the 2014 Ottawa Linux Symposium.

[34] Vasily Tarasov, Erez Zadok, and Spencer Shepler. 2016. Filebench: A

Flexible Framework for File System Benchmarking. ;login: The USENIX
Magazine 41, 1 (March 2016), 6–12.

[35] Linus Torvalds. 2006. Re: Linux 2.6.17-rc2. Mailing list. Retrieved

May 3, 2021 from https://lkml.org/lkml/2006/4/19/237

[36] Bharath Kumar Reddy Vangoor, Prafful Agarwal, Manu Mathew, Arun

Ramachandran, Swaminathan Sivaraman, Vasily Tarasov, and Erez

Zadok. 2019. Performance and Resource Utilization of FUSE User-

Space File Systems. ACM Transactions on Storage 15, 2, Article 15 (May

2019), 49 pages. https://doi.org/10.1145/3310148

[37] Dan Williams, Patrick Reynolds, Kevin Walsh, Emin Gün Sirer, and

Fred B. Schneider. 2008. Device Driver Safety Through a Reference Val-

idation Mechanism. In Proceedings of the 8th Symposium on Operating
Systems Design and Implementation. 241–254.

[38] NVM Express Workgroup. 2019. NVM Express™ over Fab-
rics Revision 1.1. Specification. Retrieved May 3, 2021 from

https://nvmexpress.org/wp-content/uploads/NVMe-over-Fabrics-

1.1-2019.10.22-Ratified.pdf

[39] Jisoo Yang, Dave B Minturn, and Frank Hady. 2012. When poll is better

than interrupt. In Proceedings of the 10th USENIX Conference on File
and Storage Technologies.

[40] Z. Yang, J. R. Harris, B. Walker, D. Verkamp, C. Liu, C. Chang, G. Cao,

J. Stern, V. Verma, and L. E. Paul. 2017. SPDK: A Development Kit to

Build High Performance Storage Applications. In Proceedings of the
2017 IEEE International Conference on Cloud Computing Technology and
Science. 154–161. https://doi.org/10.1109/CloudCom.2017.14

https://www.sourceware.org/dm
https://nbd.sourceforge.io
https://nbd.sourceforge.io
http://www.circlemud.org/jelson/software/fusd
https://github.com/naota/abuse-kmod
https://github.com/dsroche/nbdcpp
https://github.com/acozzette/BUSE
https://kernel.dk/io_uring.pdf
https://kernel.dk/io_uring.pdf
https://github.com/filebench/filebench
https://www.kernel.org/doc/html/latest/target/tcmu-design.html
https://www.kernel.org/doc/html/latest/target/tcmu-design.html
https://www.kernel.org/doc/html/latest/driver-api/uio-howto.html
https://github.com/axboe/fio
https://www.linbit.com/drbd
https://github.com/libfuse/libfuse
https://github.com/libguestfs/nbdkit
https://github.com/libguestfs/nbdkit
http://linux-iscsi.org
http://linux-iscsi.org
https://github.com/open-iscsi/tcmu-runner
http://sebastien.godard.pagesperso-orange.fr
http://sebastien.godard.pagesperso-orange.fr
https://doi.org/10.1145/2485732.2485740
https://tools.ietf.org/html/rfc7143
https://doi.org/10.1145/2980983.2908101
https://doi.org/10.1007/978-3-540-30102-8_21
https://doi.org/10.1145/1353535.1346303
https://doi.org/10.1007/s11390-005-0654-4
https://doi.org/10.1145/1774088.1774130
https://doi.org/10.1145/1774088.1774130
https://doi.org/10.1145/1218063.1217941
https://lkml.org/lkml/2006/4/19/237
https://doi.org/10.1145/3310148
https://nvmexpress.org/wp-content/uploads/NVMe-over-Fabrics-1.1-2019.10.22-Ratified.pdf
https://nvmexpress.org/wp-content/uploads/NVMe-over-Fabrics-1.1-2019.10.22-Ratified.pdf
https://doi.org/10.1109/CloudCom.2017.14

	Abstract
	1 Introduction
	2 User-Space Block Device Drivers
	2.1 Block devices
	2.2 Network Block Device
	2.3 Target Core Module in User space

	3 BDUS: A First Look
	4 BDUS: Design and Implementation
	4.1 Architecture
	4.2 Device life cycle
	4.3 Request path

	5 Methodology
	6 Evaluation
	6.1 Block device workloads
	6.2 File system workloads
	6.3 Discussion

	7 Related Work
	8 Conclusion
	References

