
5th Workshop on Data-Centric Dependability and Security (DCDS’23)

Diagnosing applications’ I/O
behavior through system call
observability
Tânia Esteves, Ricardo Macedo, Rui Oliveira and João Paulo
INESC TEC & University of Minho

Diagnosing applications’ I/O behavior through system call observability

Diagnosing applications storage I/O
Problem

๏Applications often exhibit inefficient or erroneous I/O behaviors

‣ Costly access patterns
- Small-sized I/O requests or random accesses

‣ I/O contention
- Concurrent requests to shared resources

‣ Erroneous usage of I/O calls
- Accessing wrong file offsets

2

Diagnosing applications’ I/O behavior through system call observability

Diagnosing applications storage I/O
Problem

๏Applications often exhibit inefficient or erroneous I/O behaviors

‣ Costly access patterns
- Small-sized I/O requests or random accesses

‣ I/O contention
- Concurrent requests to shared resources

‣ Erroneous usage of I/O calls
- Accessing wrong file offsets

2

RocksDB

Diagnosing applications’ I/O behavior through system call observability

Diagnosing applications storage I/O
Problem

๏Applications often exhibit inefficient or erroneous I/O behaviors

‣ Costly access patterns
- Small-sized I/O requests or random accesses

‣ I/O contention
- Concurrent requests to shared resources

‣ Erroneous usage of I/O calls
- Accessing wrong file offsets

2

RocksDB

Fluent Bit

Diagnosing applications’ I/O behavior through system call observability

Diagnosing applications storage I/O
Problem

๏Applications often exhibit inefficient or erroneous I/O behaviors

‣ Costly access patterns
- Small-sized I/O requests or random accesses

‣ I/O contention
- Concurrent requests to shared resources

‣ Erroneous usage of I/O calls
- Accessing wrong file offsets

2

Can compromise the performance, correctness and dependability of applications!

RocksDB

Fluent Bit

Diagnosing applications’ I/O behavior through system call observability

Diagnosing applications storage I/O
Current approaches

๏Source code instrumentation
‣ Intrusive

- Source code may be unavailable

‣ Complex & time-consuming
- Large codebases to understand and modify

3

✓ Provides accurate information
about applications’ actions

Diagnosing applications’ I/O behavior through system call observability

Diagnosing applications storage I/O
Current approaches

๏Source code instrumentation
‣ Intrusive

- Source code may be unavailable

‣ Complex & time-consuming
- Large codebases to understand and modify

3

Fluent Bit
1M LoC

[1] BALMAU, Oana, et al. SILK: Preventing Latency Spikes in Log-Structured Merge Key-Value Stores. In: USENIX Annual Technical Conference. 2019. p. 753-766.

RocksDB
440K LoC

SILK [1]

✓ Provides accurate information
about applications’ actions

Diagnosing applications’ I/O behavior through system call observability

Diagnosing applications storage I/O
Current approach

๏Tracing

‣ High overhead vs data loss
- High overhead can camouflage erroneous behaviors

‣ Lack of analysis pipelines
- Large number of events to analyze manually

‣ Lack of flexibility
- Solutions designed for rigid analysis scenarios

4

✓ Transparent to the application

Diagnosing applications’ I/O behavior through system call observability

Diagnosing applications storage I/O
Current approach

๏Tracing

‣ High overhead vs data loss
- High overhead can camouflage erroneous behaviors

‣ Lack of analysis pipelines
- Large number of events to analyze manually

‣ Lack of flexibility
- Solutions designed for rigid analysis scenarios

4

RocksDB

Requires a benchmark that

generates >500M system calls

✓ Transparent to the application

Diagnosing applications’ I/O behavior through system call observability

Diagnosing applications storage I/O
Current approach

๏Tracing

‣ High overhead vs data loss
- High overhead can camouflage erroneous behaviors

‣ Lack of analysis pipelines
- Large number of events to analyze manually

‣ Lack of flexibility
- Solutions designed for rigid analysis scenarios

4

RocksDB

Requires a benchmark that

generates >500M system calls

Fluent Bit

Requires accessed offsets a
nd

inodes

✓ Transparent to the application

Diagnosing applications’ I/O behavior through system call observability

DIO
This work

๏A generic tool for observing and diagnosing I/O interactions between applications
and in-kernel POSIX storage systems

‣ Transparency

‣ Comprehensive and flexible tracing

‣ Practical and timely analysis

‣ Data querying and correlation

‣ Customized visualization

5

Diagnosing applications’ I/O behavior through system call observability

DIO
This work

๏A generic tool for observing and diagnosing I/O interactions between applications
and in-kernel POSIX storage systems

‣ Transparency

‣ Comprehensive and flexible tracing

‣ Practical and timely analysis

‣ Data querying and correlation

‣ Customized visualization

5

✓A new eBPF-based tracer

Diagnosing applications’ I/O behavior through system call observability

DIO
This work

๏A generic tool for observing and diagnosing I/O interactions between applications
and in-kernel POSIX storage systems

‣ Transparency

‣ Comprehensive and flexible tracing

‣ Practical and timely analysis

‣ Data querying and correlation

‣ Customized visualization

5

✓A new eBPF-based tracer

✓ Contextual information from kernel & Filters

Diagnosing applications’ I/O behavior through system call observability

DIO
This work

๏A generic tool for observing and diagnosing I/O interactions between applications
and in-kernel POSIX storage systems

‣ Transparency

‣ Comprehensive and flexible tracing

‣ Practical and timely analysis

‣ Data querying and correlation

‣ Customized visualization

5

✓A new eBPF-based tracer

✓ Data sent directly to a remote analysis pipeline

✓ Contextual information from kernel & Filters

Diagnosing applications’ I/O behavior through system call observability

DIO
This work

๏A generic tool for observing and diagnosing I/O interactions between applications
and in-kernel POSIX storage systems

‣ Transparency

‣ Comprehensive and flexible tracing

‣ Practical and timely analysis

‣ Data querying and correlation

‣ Customized visualization

5

✓A new eBPF-based tracer

✓ Data sent directly to a remote analysis pipeline

✓ Contextual information from kernel & Filters

✓ Query, filter and correlate captured data

Diagnosing applications’ I/O behavior through system call observability

DIO
This work

๏A generic tool for observing and diagnosing I/O interactions between applications
and in-kernel POSIX storage systems

‣ Transparency

‣ Comprehensive and flexible tracing

‣ Practical and timely analysis

‣ Data querying and correlation

‣ Customized visualization

5

✓A new eBPF-based tracer

✓ Data sent directly to a remote analysis pipeline

✓ Contextual information from kernel & Filters

✓ Query, filter and correlate captured data

✓ Explore data and build customized visualizations

Diagnosing applications’ I/O behavior through system call observability

DIO
System overview

6

DIO’s components DIO main flow App flow

Diagnosing applications’ I/O behavior through system call observability

DIO
System overview

6

Application

Sy
sc

al
ls

Storage Device

DIO’s components DIO main flow App flow

Ke
rn

el
-s

pa
ce

U
se

r-s
pa

ce

Server1

Diagnosing applications’ I/O behavior through system call observability

DIO’s tracer runs along the targeted
application, intercepting its syscalls

DIO
System overview

6

Application

Sy
sc

al
ls

Tracer

Storage Device

DIO’s components DIO main flow App flow

Ke
rn

el
-s

pa
ce

U
se

r-s
pa

ce

Server1

Diagnosing applications’ I/O behavior through system call observability

DIO’s tracer runs along the targeted
application, intercepting its syscalls

DIO
System overview

6

Application

Sy
sc

al
ls P

Tracer

Storage Device

P

P

DIO’s components DIO main flow App flow

Ke
rn

el
-s

pa
ce

U
se

r-s
pa

ce

Server1

Diagnosing applications’ I/O behavior through system call observability

DIO’s tracer runs along the targeted
application, intercepting its syscalls

DIO
System overview

6

Application

Sy
sc

al
ls P

Tracer

Storage Device

P

P

DIO’s components DIO main flow App flow

attach
1

Ke
rn

el
-s

pa
ce

U
se

r-s
pa

ce

Server1

Diagnosing applications’ I/O behavior through system call observability

DIO’s tracer runs along the targeted
application, intercepting its syscalls

DIO
System overview

6

Application

Sy
sc

al
ls P

Tracer

Storage Device

P

P

read()write()

DIO’s components DIO main flow App flow

attach
1

Ke
rn

el
-s

pa
ce

U
se

r-s
pa

ce

Server1

Diagnosing applications’ I/O behavior through system call observability

DIO’s tracer runs along the targeted
application, intercepting its syscalls

DIO
System overview

6

Application

Sy
sc

al
ls P

Tracer

Storage Device

P

P

read()write()

DIO’s components DIO main flow App flow

attach
1

 intercepts2

Ke
rn

el
-s

pa
ce

U
se

r-s
pa

ce

Server1

Diagnosing applications’ I/O behavior through system call observability

DIO’s tracer runs along the targeted
application, intercepting its syscalls

DIO
System overview

6

Application

Sy
sc

al
ls P

Tracer

Storage Device

Ring
Buffer

P

P

read()write()

DIO’s components DIO main flow App flow

attach
1

 intercepts2

Ke
rn

el
-s

pa
ce

U
se

r-s
pa

ce

Server1

Diagnosing applications’ I/O behavior through system call observability

DIO’s tracer runs along the targeted
application, intercepting its syscalls

DIO
System overview

6

Application

Sy
sc

al
ls P

Tracer

Storage Device

Ring
Buffer

collect3

P

P

read()write()

DIO’s components DIO main flow App flow

attach
1

 intercepts2

Ke
rn

el
-s

pa
ce

U
se

r-s
pa

ce

Server1

Diagnosing applications’ I/O behavior through system call observability

Collected information is sent directly to
the Backend component, which is

responsible for indexing and persisting it

DIO
System overview

6

Application

Sy
sc

al
ls P

Tracer

Storage Device

Backend

Ring
Buffer

collect3

P

P

read()write()

DIO’s components DIO main flow App flow

attach
1

 intercepts2

Ke
rn

el
-s

pa
ce

U
se

r-s
pa

ce

Server1 Server2

Diagnosing applications’ I/O behavior through system call observability

Collected information is sent directly to
the Backend component, which is

responsible for indexing and persisting it

DIO
System overview

6

Application

Sy
sc

al
ls P

Tracer

Storage Device

Backend

Ring
Buffer

collect3

P

P

read()write()

DIO’s components DIO main flow App flow

attach
1

 intercepts2

send
4

Ke
rn

el
-s

pa
ce

U
se

r-s
pa

ce

Server1 Server2

Diagnosing applications’ I/O behavior through system call observability

Collected information is sent directly to
the Backend component, which is

responsible for indexing and persisting it

DIO
System overview

6

Application

Sy
sc

al
ls P

Tracer

Storage Device

Backend

Ring
Buffer

collect3

P

P

read()write()

DIO’s components DIO main flow App flow

attach
1

 intercepts2

send
4

store
5

Ke
rn

el
-s

pa
ce

U
se

r-s
pa

ce

Server1 Server2

Diagnosing applications’ I/O behavior through system call observability

As soon as the data reaches the
Backend, it becomes available for

visualization at the Visualizer

DIO
System overview

6

Application

Sy
sc

al
ls P

Tracer

Storage Device

Backend

Visualizer

Ring
Buffer

collect3

P

P

read()write()

DIO’s components DIO main flow App flow

attach
1

 intercepts2

send
4

store
5

Ke
rn

el
-s

pa
ce

U
se

r-s
pa

ce

Server1 Server2

Server3

Diagnosing applications’ I/O behavior through system call observability

As soon as the data reaches the
Backend, it becomes available for

visualization at the Visualizer

DIO
System overview

6

Application

Sy
sc

al
ls P

Tracer

Storage Device

Backend

Visualizer

Ring
Buffer

collect3

P

P

read()write()

DIO’s components DIO main flow App flow

attach
1

 intercepts2

send
4

store
5

Ke
rn

el
-s

pa
ce

U
se

r-s
pa

ce

Server1 Server2

Server3

Diagnosing applications’ I/O behavior through system call observability

Users can query directly the backend and
build correlation algorithms, or visually

explore the data at the Visualizer

DIO
System overview

6

Application

Sy
sc

al
ls P

Tracer

Storage Device

Backend

Visualizer

Ring
Buffer

collect3

P

P

read()write()

DIO’s components DIO main flow App flow

attach
1

 intercepts2

send
4

store
5

query
6

visualize
7

Ke
rn

el
-s

pa
ce

U
se

r-s
pa

ce

Server1 Server2

Server3

Diagnosing applications’ I/O behavior through system call observability

DIO
Implementation

๏Tracer
‣ Uses eBPF technology
‣ Currently supports 42 storage-related system calls
‣ Implemented in ≈8K LoC (restricted C & Go)

๏Backend & Visualizer
‣ Elasticsearch and Kibana (v8.5.2)
‣ File path correlation algorithm

- Correlates file descriptors with their corresponding file paths
‣ Pre-defined dashboards and visualizations

7

Diagnosing applications’ I/O behavior through system call observability

Evaluation
Goals

๏Showcase how DIO eases the observation of storage issues
‣ Identifying erroneous actions that lead to data loss
‣ Finding the root cause of performance anomalies

๏Understand the performance impact induced by DIO
‣ Comparison with two state-of-the-art tracers

- Unlike other tracers, DIO collects, parses, and forwards the traced information
to the analysis pipeline while imposing reduced performance overhead

8

Diagnosing applications’ I/O behavior through system call observability

Evaluation
Goals

๏Showcase how DIO eases the observation of storage issues
‣ Identifying erroneous actions that lead to data loss
‣ Finding the root cause of performance anomalies

๏Understand the performance impact induced by DIO
‣ Comparison with two state-of-the-art tracers

- Unlike other tracers, DIO collects, parses, and forwards the traced information
to the analysis pipeline while imposing reduced performance overhead

8

Fluent Bit

Diagnosing applications’ I/O behavior through system call observability

Evaluation
Goals

๏Showcase how DIO eases the observation of storage issues
‣ Identifying erroneous actions that lead to data loss
‣ Finding the root cause of performance anomalies

๏Understand the performance impact induced by DIO
‣ Comparison with two state-of-the-art tracers

- Unlike other tracers, DIO collects, parses, and forwards the traced information
to the analysis pipeline while imposing reduced performance overhead

8

RocksDB
Fluent Bit

Diagnosing applications’ I/O behavior through system call observability

Evaluation
Goals

๏Showcase how DIO eases the observation of storage issues
‣ Identifying erroneous actions that lead to data loss
‣ Finding the root cause of performance anomalies

๏Understand the performance impact induced by DIO
‣ Comparison with two state-of-the-art tracers

- Unlike other tracers, DIO collects, parses, and forwards the traced information
to the analysis pipeline while imposing reduced performance overhead

8

RocksDB
Fluent Bit

Strace

Diagnosing applications’ I/O behavior through system call observability

Evaluation
Goals

๏Showcase how DIO eases the observation of storage issues
‣ Identifying erroneous actions that lead to data loss
‣ Finding the root cause of performance anomalies

๏Understand the performance impact induced by DIO
‣ Comparison with two state-of-the-art tracers

- Unlike other tracers, DIO collects, parses, and forwards the traced information
to the analysis pipeline while imposing reduced performance overhead

8

RocksDB
Fluent Bit

Strace
Sysdig

Diagnosing applications’ I/O behavior through system call observability

Evaluation - Fluent Bit
Identifying erroneous actions that lead to data loss

๏Fluent Bit: a high-performance logging and metrics processor and forwarder
๏Problem: clients observe data loss when using Fluent Bit’s tail input plugin (v1.4.0)

9

➡https://github.com/fluent/fluent-bit/issues/1875

➡https://github.com/fluent/fluent-bit/issues/4895

https://github.com/fluent/fluent-bit/issues/1875
https://github.com/fluent/fluent-bit/issues/4895

Diagnosing applications’ I/O behavior through system call observability

Evaluation - Fluent Bit
Identifying erroneous actions that lead to data loss

๏Fluent Bit: a high-performance logging and metrics processor and forwarder
๏Problem: clients observe data loss when using Fluent Bit’s tail input plugin (v1.4.0)

9

➡https://github.com/fluent/fluent-bit/issues/1875

➡https://github.com/fluent/fluent-bit/issues/4895

https://github.com/fluent/fluent-bit/issues/1875
https://github.com/fluent/fluent-bit/issues/4895

Diagnosing applications’ I/O behavior through system call observability

Evaluation - Fluent Bit (v1.4.0)

Identifying erroneous actions that lead to data loss

10

1

2

4

5

3

Diagnosing applications’ I/O behavior through system call observability

Evaluation - Fluent Bit (v1.4.0)

Identifying erroneous actions that lead to data loss

10

1

2

4

5

3

app opens a file, writes 26 bytes from offset 0 and closes it

This is the first log
line

app.log

Diagnosing applications’ I/O behavior through system call observability

Evaluation - Fluent Bit (v1.4.0)

Identifying erroneous actions that lead to data loss

10

1

2

4

5

3

app opens a file, writes 26 bytes from offset 0 and closes it

fluent-bit opens the file and reads 26 bytes from offset 0

This is the first log
line

app.log

This is the first log
line

Diagnosing applications’ I/O behavior through system call observability

Evaluation - Fluent Bit (v1.4.0)

Identifying erroneous actions that lead to data loss

10

1

2

4

5

3

app opens a file, writes 26 bytes from offset 0 and closes it

fluent-bit opens the file and reads 26 bytes from offset 0

app removes the file and fluent-bit closes its file descriptor

Diagnosing applications’ I/O behavior through system call observability

Evaluation - Fluent Bit (v1.4.0)

Identifying erroneous actions that lead to data loss

10

1

2

4

5

3

app opens a file, writes 26 bytes from offset 0 and closes it

fluent-bit opens the file and reads 26 bytes from offset 0

app removes the file and fluent-bit closes its file descriptor

app opens a new file with same name and inode number
(12), writes 16 bytes from offset 0 and closes the file

Some new content

app.log

Diagnosing applications’ I/O behavior through system call observability

Evaluation - Fluent Bit (v1.4.0)

Identifying erroneous actions that lead to data loss

10

1

2

4

5

3

app opens a file, writes 26 bytes from offset 0 and closes it

fluent-bit opens the file and reads 26 bytes from offset 0

app removes the file and fluent-bit closes its file descriptor

app opens a new file with same name and inode number
(12), writes 16 bytes from offset 0 and closes the file

fluent-bit opens new file, jumps to offset 26 and tries to read
from there, which results in 0 bytes (EOF)

Some new content

app.log

Some new content
………|

Diagnosing applications’ I/O behavior through system call observability

Evaluation - Fluent Bit (v1.4.0)

Identifying erroneous actions that lead to data loss

10

1

2

4

5

3

app opens a file, writes 26 bytes from offset 0 and closes it

fluent-bit opens the file and reads 26 bytes from offset 0

app removes the file and fluent-bit closes its file descriptor

app opens a new file with same name and inode number
(12), writes 16 bytes from offset 0 and closes the file

fluent-bit opens new file, jumps to offset 26 and tries to read
from there, which results in 0 bytes (EOF)

Some new content

app.log

Some new content
………|

Erroneous access pattern!

Diagnosing applications’ I/O behavior through system call observability

Evaluation - Fluent Bit
Identifying erroneous actions that lead to data loss

๏Root cause: Fluent Bit tracks the last
processed offset for each file, which is not
reset when the file is removed

๏Solution: Upon file deletion or rotation,
remove the entry from the database

๏Validation: Use DIO to validate the correction
of this erroneous pattern in a recent version

11

Database

Fix

Diagnosing applications’ I/O behavior through system call observability

1

2

4

5

3

Evaluation - Fluent Bit (v2.0.5)

Identifying erroneous actions that lead to data loss

12

Diagnosing applications’ I/O behavior through system call observability

1

2

4

5

3

Evaluation - Fluent Bit (v2.0.5)

Identifying erroneous actions that lead to data loss

12

app opens a file, writes 26 bytes from offset 0 and closes it

This is the first log
line

app.log

Diagnosing applications’ I/O behavior through system call observability

1

2

4

5

3

Evaluation - Fluent Bit (v2.0.5)

Identifying erroneous actions that lead to data loss

12

app opens a file, writes 26 bytes from offset 0 and closes it

fluent-bit opens the file, reads 26 bytes from offset 0

This is the first log
line

app.log

This is the first log
line

Diagnosing applications’ I/O behavior through system call observability

1

2

4

5

3

Evaluation - Fluent Bit (v2.0.5)

Identifying erroneous actions that lead to data loss

12

app opens a file, writes 26 bytes from offset 0 and closes it

fluent-bit opens the file, reads 26 bytes from offset 0

app removes the file and fluent-bit closes its file descriptor

Diagnosing applications’ I/O behavior through system call observability

1

2

4

5

3

Evaluation - Fluent Bit (v2.0.5)

Identifying erroneous actions that lead to data loss

12

app opens a file, writes 26 bytes from offset 0 and closes it

fluent-bit opens the file, reads 26 bytes from offset 0

app removes the file and fluent-bit closes its file descriptor

app opens a new file with same name and inode number
(12), writes 16 bytes from offset 0 and closes the file

Some new content

app.log

Diagnosing applications’ I/O behavior through system call observability

1

2

4

5

3

Evaluation - Fluent Bit (v2.0.5)

Identifying erroneous actions that lead to data loss

12

app opens a file, writes 26 bytes from offset 0 and closes it

fluent-bit opens the file, reads 26 bytes from offset 0

app removes the file and fluent-bit closes its file descriptor

app opens a new file with same name and inode number
(12), writes 16 bytes from offset 0 and closes the file

fluent-bit opens new file and reads 16 bytes from offset 0

Some new content

app.log

Some new content

Diagnosing applications’ I/O behavior through system call observability

1

2

4

5

3

Evaluation - Fluent Bit (v2.0.5)

Identifying erroneous actions that lead to data loss

12

app opens a file, writes 26 bytes from offset 0 and closes it

fluent-bit opens the file, reads 26 bytes from offset 0

app removes the file and fluent-bit closes its file descriptor

app opens a new file with same name and inode number
(12), writes 16 bytes from offset 0 and closes the file

fluent-bit opens new file and reads 16 bytes from offset 0

Some new content

app.log

Some new content

Correct access pattern!

Diagnosing applications’ I/O behavior through system call observability

Evaluation - Fluent Bit
Identifying erroneous actions that lead to data loss

๏DIO helps users diagnose incorrect I/O behavior from applications and find the
root cause for dependability issues such as data loss

๏DIO helps validate the corrections applied to the applications’ implementation

13

Diagnosing applications’ I/O behavior through system call observability

Evaluation - RocksDB
Finding the root cause of performance anomalies

๏RocksDB: an embedded key-value store

๏Problem: RocksDB clients observe high tail latencies (1 & 3)
‣ Reproducible with db_bench benchmark

14

1.0
1.5
2.0
2.5
3.0
3.5

15:00 15:02 15:04 15:06 15:08 15:10 15:12 15:14La
te

nc
y

(m
s)

Time (HH:MM)

1

2

3

4

99th percentile latency for RocksDB client operations.

Diagnosing applications’ I/O behavior through system call observability

Evaluation - RocksDB
Finding the root cause of performance anomalies

15

15:05 15:06 15:07 15:08 15:09

80004000
80004000
80004000
80004000
80004000
80004000
80004000
80004000

20000
10000

#e
ve

nt
s

rocksdb
:low0

rocksdb
:low1
rocksdb
:low2
rocksdb
:low3
rocksdb
:low4
rocksdb
:low5

rocksdb
:low6
rocksdb
:high0

db_bench

Time (HH:MM)
Syscalls issued by RocksDB over time, aggregated by thread name.

1.0
1.5
2.0
2.5
3.0
3.5

15:00 15:02 15:04 15:06 15:08 15:10 15:12 15:14La
te

nc
y

(m
s)

Time (HH:MM)

1

2

3

4

Diagnosing applications’ I/O behavior through system call observability

Evaluation - RocksDB
Finding the root cause of performance anomalies

15

15:05 15:06 15:07 15:08 15:09

80004000
80004000
80004000
80004000
80004000
80004000
80004000
80004000

20000
10000

#e
ve

nt
s

rocksdb
:low0

rocksdb
:low1
rocksdb
:low2
rocksdb
:low3
rocksdb
:low4
rocksdb
:low5

rocksdb
:low6
rocksdb
:high0

db_bench

Time (HH:MM)
Syscalls issued by RocksDB over time, aggregated by thread name.

Client

1.0
1.5
2.0
2.5
3.0
3.5

15:00 15:02 15:04 15:06 15:08 15:10 15:12 15:14La
te

nc
y

(m
s)

Time (HH:MM)

1

2

3

4

Diagnosing applications’ I/O behavior through system call observability

Evaluation - RocksDB
Finding the root cause of performance anomalies

15

15:05 15:06 15:07 15:08 15:09

80004000
80004000
80004000
80004000
80004000
80004000
80004000
80004000

20000
10000

#e
ve

nt
s

rocksdb
:low0

rocksdb
:low1
rocksdb
:low2
rocksdb
:low3
rocksdb
:low4
rocksdb
:low5

rocksdb
:low6
rocksdb
:high0

db_bench

Time (HH:MM)
Syscalls issued by RocksDB over time, aggregated by thread name.

Flush

Client

1.0
1.5
2.0
2.5
3.0
3.5

15:00 15:02 15:04 15:06 15:08 15:10 15:12 15:14La
te

nc
y

(m
s)

Time (HH:MM)

1

2

3

4

Diagnosing applications’ I/O behavior through system call observability

Evaluation - RocksDB
Finding the root cause of performance anomalies

15

15:05 15:06 15:07 15:08 15:09

80004000
80004000
80004000
80004000
80004000
80004000
80004000
80004000

20000
10000

#e
ve

nt
s

rocksdb
:low0

rocksdb
:low1
rocksdb
:low2
rocksdb
:low3
rocksdb
:low4
rocksdb
:low5

rocksdb
:low6
rocksdb
:high0

db_bench

Time (HH:MM)
Syscalls issued by RocksDB over time, aggregated by thread name.

C
om

pa
ct

io
ns

Flush

Client

1.0
1.5
2.0
2.5
3.0
3.5

15:00 15:02 15:04 15:06 15:08 15:10 15:12 15:14La
te

nc
y

(m
s)

Time (HH:MM)

1

2

3

4

Diagnosing applications’ I/O behavior through system call observability

Evaluation - RocksDB
Finding the root cause of performance anomalies

15

15:05 15:06 15:07 15:08 15:09

80004000
80004000
80004000
80004000
80004000
80004000
80004000
80004000

20000
10000

#e
ve

nt
s

rocksdb
:low0

rocksdb
:low1
rocksdb
:low2
rocksdb
:low3
rocksdb
:low4
rocksdb
:low5

rocksdb
:low6
rocksdb
:high0

db_bench

Time (HH:MM)
Syscalls issued by RocksDB over time, aggregated by thread name.

1 3

‣ (1&3) multiple background threads perform I/O simultaneously, db_bench performance decreases

C
om

pa
ct

io
ns

Flush

Client

1.0
1.5
2.0
2.5
3.0
3.5

15:00 15:02 15:04 15:06 15:08 15:10 15:12 15:14La
te

nc
y

(m
s)

Time (HH:MM)

1

2

3

4

Diagnosing applications’ I/O behavior through system call observability

Evaluation - RocksDB
Finding the root cause of performance anomalies

15

‣ (2&4) few background threads perform I/O simultaneously, db_bench performance improves

15:05 15:06 15:07 15:08 15:09

80004000
80004000
80004000
80004000
80004000
80004000
80004000
80004000

20000
10000

#e
ve

nt
s

rocksdb
:low0

rocksdb
:low1
rocksdb
:low2
rocksdb
:low3
rocksdb
:low4
rocksdb
:low5

rocksdb
:low6
rocksdb
:high0

db_bench

Time (HH:MM)
Syscalls issued by RocksDB over time, aggregated by thread name.

1 32 4

‣ (1&3) multiple background threads perform I/O simultaneously, db_bench performance decreases

C
om

pa
ct

io
ns

Flush

Client

1.0
1.5
2.0
2.5
3.0
3.5

15:00 15:02 15:04 15:06 15:08 15:10 15:12 15:14La
te

nc
y

(m
s)

Time (HH:MM)

1

2

3

4

Diagnosing applications’ I/O behavior through system call observability

Evaluation - RocksDB
Finding the root cause of performance anomalies

๏Root cause: Latency spikes occur when threads compete for shared disk
bandwidth, leading to performance contention

๏This is the phenomenon identified in SILK[1] and observable with DIO without
any code instrumentation

16

[1] BALMAU, Oana, et al. SILK: Preventing Latency Spikes in Log-Structured Merge Key-Value Stores. In: USENIX Annual Technical Conference. 2019. p. 753-766.

Diagnosing applications’ I/O behavior through system call observability

Conclusion

๏DIO is a generic tool for observing and diagnosing I/O interactions between
applications and in-kernel POSIX storage systems

๏Helps observe I/O issues, find their root causes and validate their fixes

๏Experiments, with two widely-used systems, show that DIO enables
‣ observing erroneous I/O access patterns that lead to data loss
‣ identifying I/O contention that leads to high tail latency

17

Diagnosing applications’ I/O behavior through system call observability

Future directions

๏Simplify analysis with new automated correlation algorithms

๏Explore other applications for uncovering new I/O issues

๏Further analyze DIO’s performance overhead and explore new optimizations

18

Diagnosing applications’ I/O behavior through system call observability

DIO
Diagnosing applications’ I/O behavior through system call observability

๏DIO is publicly available at

‣ Github: github.com/dsrhaslab/dio

‣ Website: dio-tool.netlify.app

‣ Contact: tania.c.araujo@inesctec.pt

19

https://github.com/dsrhaslab/dio
http://dio-tool.netlify.app
mailto:tania.c.araujo@inesctec.pt

5th Workshop on Data-Centric Dependability and Security (DCDS’23)

Diagnosing applications’ I/O
behavior through system call
observability
Tânia Esteves, Ricardo Macedo, Rui Oliveira and João Paulo
INESC TEC & University of Minho

