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[1] BALMAU, Oana, et al. SILK: Preventing Latency Spikes in Log-Structured Merge Key-Value Stores. In: USENIX Annual Technical Conference. 2019. p. 753-766.
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‣ Data querying and correlation 
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As soon as the data reaches the 
Backend, it becomes available for 
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Users can query directly the backend and 
build correlation algorithms, or visually 

explore the data at the Visualizer
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DIO
Implementation

๏Tracer 
‣ Uses eBPF technology 
‣ Currently supports 42 storage-related system calls 
‣ Implemented in ≈8K LoC (restricted C & Go) 

๏Backend & Visualizer 
‣ Elasticsearch and Kibana (v8.5.2) 
‣ File path correlation algorithm 

- Correlates file descriptors with their corresponding file paths 
‣ Pre-defined dashboards and visualizations
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Evaluation
Goals

๏Showcase how DIO eases the observation of storage issues 
‣ Identifying erroneous actions that lead to data loss  
‣ Finding the root cause of performance anomalies  

๏Understand the performance impact induced by DIO 
‣ Comparison with two state-of-the-art tracers 

- Unlike other tracers, DIO collects, parses, and forwards the traced information 
to the analysis pipeline while imposing reduced performance overhead
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Evaluation - Fluent Bit
Identifying erroneous actions that lead to data loss 

๏Fluent Bit: a high-performance logging and metrics processor and forwarder 
๏Problem: clients observe data loss when using Fluent Bit’s tail input plugin (v1.4.0)
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➡https://github.com/fluent/fluent-bit/issues/1875 
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Evaluation - Fluent Bit
Identifying erroneous actions that lead to data loss 

๏Root cause: Fluent Bit tracks the last 
processed offset for each file, which is not 
reset when the file is removed 

๏Solution: Upon file deletion or rotation, 
remove the entry from the database 

๏Validation: Use DIO to validate the correction 
of this erroneous pattern in a recent version

11
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Evaluation - Fluent Bit
Identifying erroneous actions that lead to data loss 

๏DIO helps users diagnose incorrect I/O behavior from applications and find the 
root cause for dependability issues such as data loss 

๏DIO helps validate the corrections applied to the applications’ implementation

13
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Evaluation - RocksDB
Finding the root cause of performance anomalies

๏RocksDB: an embedded key-value store 

๏Problem: RocksDB clients observe high tail latencies (1 & 3) 
‣ Reproducible with db_bench benchmark
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Evaluation - RocksDB
Finding the root cause of performance anomalies
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Evaluation - RocksDB
Finding the root cause of performance anomalies
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Evaluation - RocksDB
Finding the root cause of performance anomalies
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Evaluation - RocksDB
Finding the root cause of performance anomalies
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Evaluation - RocksDB
Finding the root cause of performance anomalies
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Evaluation - RocksDB
Finding the root cause of performance anomalies

๏Root cause: Latency spikes occur when threads compete for shared disk 
bandwidth, leading to performance contention 

๏This is the phenomenon identified in SILK[1] and observable with DIO without 
any code instrumentation

16

[1] BALMAU, Oana, et al. SILK: Preventing Latency Spikes in Log-Structured Merge Key-Value Stores. In: USENIX Annual Technical Conference. 2019. p. 753-766.
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Conclusion

๏DIO is a generic tool for observing and diagnosing I/O interactions between 
applications and in-kernel POSIX storage systems 

๏Helps observe I/O issues, find their root causes and validate their fixes 

๏Experiments, with two widely-used systems, show that DIO enables 
‣  observing erroneous I/O access patterns that lead to data loss 
‣  identifying I/O contention that leads to high tail latency

17
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Future directions

๏Simplify analysis with new automated correlation algorithms 

๏Explore other applications for uncovering new I/O issues 

๏Further analyze DIO’s performance overhead and explore new optimizations

18
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DIO
Diagnosing applications’ I/O behavior through system call observability

๏DIO is publicly available at 

‣ Github: github.com/dsrhaslab/dio 

‣ Website: dio-tool.netlify.app 

‣ Contact: tania.c.araujo@inesctec.pt
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