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Abstract—We present DIO, a generic tool for observing inef-
ficient and erroneous I/O interactions between applications and
in-kernel storage systems that lead to performance, dependability,
and correctness issues. DIO facilitates the analysis and enables
near real-time visualization of complex I/O patterns for data-
intensive applications generating millions of storage requests.
This is achieved by non-intrusively intercepting system calls,
enriching collected data with relevant context, and providing
timely analysis and visualization for traced events.

We demonstrate its usefulness by analyzing two production-
level applications. Results show that DIO enables diagnosing
resource contention in multi-threaded I/O that leads to high tail
latency and erroneous file accesses that cause data loss.

Index Terms—Storage systems, I/O diagnosis, tracing, analysis

I. INTRODUCTION

The performance, correctness and dependability of data-

intensive applications (e.g., databases, key-value stores, ana-

lytical engines, machine learning frameworks) is highly influ-

enced by the way these interact with in-kernel POSIX storage

backends, such as file systems and block devices [1], [2].

Due to human error and lack of detailed knowledge on

how to efficiently and correctly access the storage backend,

developers often implement applications that exhibit: i) costly

access patterns, such as small-sized I/O requests or random

accesses; ii) I/O contention caused by having concurrent

requests accessing shared storage resources; and iii) erroneous

usage of I/O calls, for example, by accessing wrong file

offsets. These patterns lead to inefficient or incorrect storage

I/O accesses, which not only compromise the usefulness of

optimizations implemented within each storage backend (e.g.,
caching, scheduling), but can ultimately degrade end-to-end

performance, negatively impact availability, and even cause

data loss for applications.

The sheer amount of storage operations generated by these

applications, which can range from hundreds to thousands of

operations per second, makes their analysis a complex and

time-consuming task when done manually. Thus, diagnosis

tools that can help users and developers to profile more

precisely the I/O interaction between applications and corre-

sponding storage backends are crucial for debugging errors,

finding performance and dependability issues, and identifying

potential optimizations for applications [3]–[5].

The main insight of this paper is that, by combining system

call (or syscall for short) tracing with a customizable analysis

pipeline, one can provide non-intrusive and comprehensive I/O

diagnosis for applications using in-kernel POSIX storage sys-

tems (e.g., file system, Linux block device). Doing so requires

overcoming the following limitations of existing approaches.

Intrusiveness. The collection of information about I/O re-

quests is often done through source code instrumentation [6]–

[9]. This approach is not easily applicable across different

applications, as it requires users to manually analyze and

instrument distinct and potentially large codebases.

Practicality. I/O requests can be intercepted non-intrusively

with kernel-level tracing technologies. However, the perfor-

mance penalty imposed on the application by widely-used

solutions, such as strace [10], can make this choice unpractical

for data-intensive workloads. Namely, it significantly increases

the time for tracing requests and, due to the performance

slowdown, can hide subtle concurrency issues, such as I/O

contention or starvation [4], [11]. This challenge motivated the

emergence of technologies such as eBPF [12] and LTTng [13],

which follow a non-blocking tracing strategy that reduces

performance overhead at the cost of potentially discarding I/O

events that cannot be processed in a timely fashion.

Lack of analysis pipeline. While efficient I/O tracing is

an important step for profiling applications, by itself is not

sufficient, given the large amount of collected events (easily

reaching tens of millions) that must be parsed, correlated, and

visually represented to provide insightful information (e.g.,
showcase contention in multi-threaded I/O). Several solutions

only cover the tracing collection step, delegating these other

time-consuming tasks to users [10], [14]–[16].

Flexibility. Solutions offering a complete pipeline for applica-

tion diagnosis are designed for rigid analysis scenarios, such

as detecting unreproducible builds [17], observing file offset

access patterns [5], or identifying security issues [18], [19].

Thus, for multi-purpose profiling tasks, one must combine

several of these tools and repeat multiple times the tracing,

analysis, and visualization of the same application. Ideally,

diagnosis tools should provide the flexibility to narrow or

broaden both tracing and analysis scopes based on user goals.

This would enable exploring a wider range of performance,

correctness, and dependability issues that applications may

exhibit, as those presented in §III.

This paper proposes DIO, a generic tool for observing and

diagnosing applications’ storage I/O, which addresses these
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challenges with the following contributions.

Non-intrusive, comprehensive, and flexible tracing. DIO

offers a new eBPF-based tracer that intercepts syscalls issued

by applications without requiring changes to their source code

or instrumentation of binaries. The tracer supports 42 storage-

related syscalls and records a comprehensive set of information

for each collected operation, including its type, arguments, re-

turn value, timestamps, ProcessID (PID), and ThreadID (TID).

By offering a flexible design, DIO allows collecting only

events of interest, filtering them (in kernel-space) by syscall

type, PID, TID, or file paths. This enables narrowing the

tracing scope according to users’ requirements and minimizing

performance overhead over the targeted application.

Enriched analysis. DIO enriches data gathered for each

syscall with additional context available at the kernel (e.g.,
process name, file type, file offset), which can be used to im-

prove the correlation and analysis of requests (e.g., associating

different syscalls to a file path, differentiating operations over

regular files or directories). These features enable a richer and

wider analysis of incorrect or inefficient I/O patterns.

Asynchronous event handling. Only syscall interception is

done synchronously, while collected events are sent and stored

at a remote backend asynchronously. This avoids adding extra

latency in the critical path of I/O requests and enables practical

analysis of long and data-intensive storage workloads.

Near real-time pipeline. DIO offers a practical and customiz-

able pipeline so that users can create their own queries, corre-

lation algorithms, and visualization dashboards to analyze col-

lected data. The pipeline follows an in-line approach, meaning

that traced information is automatically parsed and forwarded

to the analysis and visualization components as soon as it is

captured without requiring manual user intervention.

DIO is implemented as an open-source prototype using

eBPF [12], Elasticsearch [20], and Kibana [21], and validated

with production-level systems. Results show that DIO enables

the diagnosis of i) erroneous file accesses that cause data loss

in Fluent Bit, and ii) resource contention in multi-threaded

I/O that leads to high tail latency for user workloads in

RocksDB. All artifacts discussed in this paper, including

DIO, workloads, scripts, and the corresponding analysis and

visualization outputs are publicly available.1

II. THE DIO TOOL

DIO is a generic tool for observing and diagnosing the I/O

interactions between applications and in-kernel POSIX storage

systems. Its design is built over the following core principles,

which address the challenges discussed in §I.

Transparency. DIO relies on the Linux kernel tracing infras-

tructure, namely tracepoints and kernel probes, to intercept

applications’ syscalls without requiring any modification to

their source code or underlying libraries.

Practical and timely analysis. Traced data is asynchronously

sent to a remote analysis pipeline, avoiding adding extra

1https://github.com/dsrhaslab/dio
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Fig. 1: DIO’s design and flow of events.

latency on the critical I/O path of applications while enabling

users to visualize collected data in near real-time.

Post-mortem analysis. DIO allows storing different tracing

executions from the same or different applications and poste-

riorly analyzing and comparing them.

Flexible and comprehensive tracing. DIO intercepts dif-

ferent types of storage-related syscalls, covering data (e.g.,
write), metadata (e.g., stat), extended attributes (e.g.,
getxattr), and directory management (e.g., mknod) re-

quests. Users can choose to capture only the relevant syscalls

for their analysis goals and further filter these based on

targeted PIDs, TIDs, or file paths.

Enriching syscall analysis. DIO enriches the information

provided directly by each syscall (i.e., type, arguments, return

value) with additional context from the kernel, such as the

name of the process that originated the request, the type of

the file being accessed by it, and its offset.

Data querying and correlation. With DIO, users can query

traced data, apply filters to analyze specific information (e.g.,
syscalls executed by a specific TID), and correlate different

types of data (e.g., associate file descriptors with file paths).

Customized visualization. DIO comprises a visualization

component that provides mechanisms for simplifying the ex-

ploration of traced data and to build customized visualizations.

A. System overview

DIO consists of three main components, namely the tracer,

the backend, and the visualizer, as depicted in Fig. 1. DIO’s

analysis pipeline includes the latter two components.

The tracer intercepts syscalls from applications, filters them

according to the user’s configurations (e.g., by TID), and

packs their information into events that are asynchronously

sent to the backend ( 4 ). The backend persists and indexes

events ( 5 ), and allows users to query and summarize (e.g.,
aggregating) stored information ( 6 ).

The visualizer provides near real-time visualization of the

traced events by querying the backend ( 7 ). Users rely on

the visualizer to ease the process of data exploration and

2
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TABLE I: Syscalls supported by DIO.

Type Syscall

Data read, pread64, readv, write, pwrite64
writev, fsync, fdatasync, readahead

Metadata

creat, open, openat, close
lseek, truncate, ftruncate
rename, renameat, renameat2
unlink, unlinkat, readlink, readlinkat
stat, lstat, fstat, fstatfs, fstatat

Extended
getxattr, lgetxattr, fgetxattr
setxattr, lsetxattr, fsetxattr
listxattr, llistxattr, flistxattr
removexattr, lremovexattr, fremovexattr

Directory mknod, mknodat

analysis, by selecting specific types of data (e.g., syscall types,

arguments) to build different and customized representations.

B. Tracer

The tracer intercepts syscalls done by applications in a

non-intrusive way. To that end, it relies on the eBPF tech-

nology [12], which allows instrumenting the Linux kernel by

executing small programs (i.e., eBPF programs) whenever a

given point of interest (e.g., tracepoints, kprobes) is called.

In detail, DIO’s tracer comprises a set of eBPF programs

that, at the initialization phase ( 1 ), are automatically and

transparently attached to syscall tracepoints. Whenever these

tracepoints are reached (i.e., a syscall is invoked), the eBPF

program gathers the information about the request and places

it in a per-CPU ring buffer ( 2 ), which is a contiguous memory

area used for exchanging data between kernel (producers) and

user-space (consumers) processes. At user-space, the tracer
asynchronously fetches information from the ring buffer ( 3 ),

parses it into events (specified in JSON objects), and sends

these to the backend ( 4 ). To minimize both network and

performance overhead, the tracer groups several events into

buckets that are sent and indexed in batches at the backend.

Table I depicts the syscalls supported by DIO. Currently,

DIO focuses on storage-related operations, but it can be ex-

tended to support other syscalls. Since instrumenting syscalls

can introduce extra processing in the critical path of I/O

requests, DIO allows users to filter requests by: i) type, ii)
process or thread ID(s), and iii) targeted file or directory

path(s). By implementing these filters in the kernel, DIO

reduces the amount of information sent to user-space.

Collected information. For each intercepted syscall, DIO

collects information related to the: i) request (type, argu-

ments, and return value); ii) process (PID, TID, and process

name) and iii) time (entry and exit timestamps). While this

information alone already provides valuable insights about

applications’ I/O behavior (e.g., syscalls issued over time, size

of I/O requests), correlating it with other types of data further

enriches and eases the users’ analysis (as further discussed in

§III). Therefore, the tracer leverages eBPF’s access to kernel

structures and enriches traced information with:

• the file type targeted by syscalls, which enables differ-

entiating accesses to regular files, directories, sockets,

block/char devices, pipes, symbolic links, and other files.

• the file offset being accessed by data-related syscalls. This

information allows observing file access patterns (e.g.,
random accesses), even for syscalls that do not provide

the file offset as an argument (e.g., read, write).

• a file tag that labels syscalls handling file descriptors

(e.g., read, close) with a tag containing the device

number, inode number, and first file access timestamp

that uniquely identify the file being accessed.

C. Backend

The backend allows persisting, searching, and analyzing

data from traced events. It uses the Elasticsearch [20] dis-

tributed engine for storing and processing large volumes of

data. Its flexible document-oriented schema allows indexing

events as documents, even if these have potentially differ-

ent structures (e.g., distinct fields corresponding to syscall

arguments). Moreover, it provides an interface for searching,

querying, and updating documents, which allows users to

develop and integrate customized data correlation algorithms.

File path correlation algorithm. We have implemented a

custom algorithm to enable the correlation of syscalls with

specific accessed file paths. Using Elasticsearch’s data query-

ing and updating features, the file tags (i.e., unique identifiers

generated by the tracer component) associated with syscalls

are translated into the actual file paths being accessed at the

storage backend (e.g., /tmp/fileA).

D. Visualizer

The visualizer provides an automated approach towards

exploring (e.g., query and filter events) and visually depict-

ing (e.g., through tables, histograms, time-series graphs) the

analysis findings. This component uses Kibana [21], the data

visualization dashboard software for Elasticsearch, which is

often used for log and time-series analytics and application

monitoring. Kibana also allows building custom visualizations,

thus being aligned with the design principles of DIO.

E. Implementation

The tracer is implemented in ≈8K LoC, divided into two

parts: i) the eBPF programs that run in kernel-space and ii)
the user-space code including the remaining tracer’s logic.

The eBPF programs are implemented in C and are respon-

sible for collecting and filtering relevant storage I/O events.

The user-space code is implemented in Go (v17.4) and is

responsible for enabling the desired I/O tracepoints (attaching

eBPF programs), specifying the user-defined filters applied

at each tracepoint, gathering and parsing the information

collected at kernel-space, and sending it to the backend compo-

nent. This is done using the BPF Compiler Collection (BCC)

framework through the gobpf lib (v0.2.0), which provides an

abstraction for creating, attaching, and interacting with eBPF
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programs. For communication with Elasticsearch, we use the

go-elasticsearch (v7.13.1) module, taking advantage of the

bulk indexing API for sending multiple events simultaneously.

The backend and visualizer components use Elasticsearch

(v8.5.2) and Kibana (v8.5.2), respectively. The file path corre-

lation algorithm can be automatically executed by the tracer
or on-demand by users.

F. Configuration and Usage

The installation and configuration of DIO are performed

in two phases: i) the setup and initialization of the analysis

pipeline and ii) the configuration and execution of the tracer.

Analysis pipeline. Although all DIO’s components can be

deployed in the same machine, to avoid negatively impacting

the performance of the targeted application (e.g., additional

resource consumption), the analysis pipeline can be installed

on a separate server(s) (Fig. 1). Further, as the tracer com-

ponent labels each tracing execution with a unique session

name, one can deploy DIO as a service, setting up the analysis

pipeline on dedicated servers and allowing multiple executions

of DIO’s tracer on different machines and by distinct users.

The deployment and configuration of the analysis pipeline

comprise its software installation (i.e., Elasticsearch and

Kibana) and importing its predefined dashboards. As soon as

tracing data arrives at the pipeline, users can access Kibana’s

web page and visualize DIO’s dashboards, apply analysis

filters, and edit or create new visualizations and dashboards.

Tracer. Once the analysis pipeline is deployed, users can use

DIO’s tracer to collect information. The tracer executes along

with the targeted application, stopping once its main and child

processes finish or upon explicit users’ instruction.

By default, DIO’s tracer enables tracepoints for the full

set of supported syscalls. However, users can specify a list

of syscalls to observe, and the tracer will only activate

tracepoints for those operations. Also, users may specify a list

of files/directories to observe, instructing the tracer to only

record events that target them. All these configurations, along

with the analysis pipeline’s parameters (e.g., Elasticsearch

URL), can be set through a configuration file.

III. EVALUATION

Our evaluation showcases how DIO can be used to ease the

process of observing/confirming known issues and validating

their fixes. To this end, we analyzed two production-level

applications: Fluent Bit and RocksDB. Results show that

DIO is a practical tool for validating the root causes of

correctness (§III-B) and performance (§III-C) issues, without

instrumenting large codebases. With the exception of Fig. 3,

all the remaining figures in this section were generated by

DIO (with minimal modifications for readability)2.

A. Experimental Setup

Our testbed comprises three servers running Ubuntu 20.04
LTS with kernel 5.4.0. The server running the application and

2DIO’s visualizations are available at https://github.com/dsrhaslab/dio.

DIO’s tracer is equipped with a 4-core Intel Core i3-7100,

16 GiB of memory, a 250 GiB NVMe SSD (which hosts the

datasets), and a 512 GiB SATA SSD (used for logging). DIO’s

backend and visualization components run on two separate

servers, equipped with a 6-core Intel i5-9500, 16 GiB of

memory, and a 250 GiB NVMe SSD.

B. Identifying erroneous actions that lead to data loss
DIO can assist developers and users in diagnosing the

correctness of their applications. We demonstrate this by

showing erroneous I/O access patterns that result in data loss.
For this use case, we consider Fluent Bit (v1.4.0), a

high-performance logging and metrics processor and for-

warder [22]. Existing issues3,4 report that data is lost when

using the tail input plugin, which is used to fetch new

content being added to log files. Thus, we implemented a

client program that simulates the generation of log files to be

processed by Fluent Bit and mimics the I/O behavior reported

in Issue #18753. DIO was used to simultaneously trace and

analyze the client program and Fluent Bit by filtering the

syscalls belonging to the set of processes of these applications.
Fig. 2a shows a tabular visualization generated by DIO.

The client program (app) starts by creating the app.log file,

writing 26 bytes starting from offset 0, and closing the file ( 1 ).

Then, Fluent Bit (fluent-bit) detects content modification at the

file, opens it, and reads 26 bytes from offset 0, which means

that fluent-bit processes the full content previously written by

app ( 2 ). Later, app removes the file with the unlink syscall,

and fluent-bit closes the corresponding file descriptor ( 3 ). At

the operating system level, this means that the inode number

associated with this file (12) is now unused and will later be

attributed to a new file. However, a possible scenario is this

inode number being mapped to a newly created file with the

same name. This happens when app creates a new file with

the same name as the previous one (app.log) and writes 16

bytes to it ( 4 ). The incorrect behavior reported at the issue,

and observable with DIO, happens when fluent-bit opens the

new log file for reading its content, but instead of reading

from offset 0, as expected, it starts reading at offset 26 ( 5 ).

By starting at the wrong offset, the read syscall returns zero

bytes, and the 16 bytes written by app are lost.
To understand the reason for this behavior, we examined

Fluent Bit’s code responsible for reading new content entries

in log files. Before reading a file, Fluent Bit updates the file

position to the number of bytes already processed. This value

is kept on a database for each tracked file, identified by its

name plus inode number. Erroneously, database entries are not

deleted when files are removed from the file system. Therefore,

and going back to our running example, since the same file

name (app.log) and inode number (12) are attributed to the

newly created file, fluent-bit erroneously assumes that the first

26 bytes of the latter log file were already processed.
To validate the correction of this erroneous access pattern,

we used DIO to analyze a more recent version of Fluent Bit

3https://github.com/fluent/fluent-bit/issues/1875
4https://github.com/fluent/fluent-bit/issues/4895
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(a) Fluent Bit (v1.4.0) erroneous access pattern. (b) Fluent Bit (v2.0.5) correct access pattern.

Fig. 2: Fluent Bit erroneous access pattern leading to data loss.

(v2.0.5), where fixes were applied to avoid this data loss issue.

Fig. 2b shows a similar tabular visualization for the fixed

version. While the two versions present similar behavior (same

file accesses for 1 - 4 ), the difference relies on the file offset

being accessed by Fluent Bit (flb-pipeline) when reading from

a new file ( 5 ). This time, Fluent Bit starts reading from the

beginning of the file (offset 0), being able to read the new 16

bytes written by app.

This example shows that DIO helps users diagnose incorrect

I/O behavior from applications and find the root cause for

dependability issues such as data loss. Further, while this

example only showcases a small amount of lost data, it can be

significantly higher when dealing with larger log files. More-

over, this use case also exemplifies how DIO helps validate

the corrections applied to the applications’ implementation.

C. Finding the root cause of performance anomalies

We now demonstrate how DIO can also ease the process of

diagnosing performance issues by identifying the root cause

for high tail latency at client requests issued to RocksDB, an

embedded key-value store (KVS) [23].

This phenomenon was first observed in SILK [24] and,

therefore, we followed the same testing methodology to re-

produce it. We used the db bench benchmark [25] configured

with 8 client threads performing a mixture of read-write

requests in a closed loop (YCSB A [26]). RocksDB was

configured with 8 background threads, namely 1 for flushes

and 7 for compactions. Fig. 3 reports a sample of a 5-hour long

execution and depicts the 99th percentile latency experienced

by clients. Throughout this sample, clients observe several

latency spikes that range between 1.5 ms to 3.5 ms.

Finding the root cause for this performance penalty through

RocksDB codebase instrumentation would require inspecting

more than 440K LoC and adding debugging code to several

core components. Alternatively, with DIO, one can easily

trace, analyze, and visualize RocksDB execution, as depicted
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Fig. 3: 99th percentile latency for RocksDB client operations.

in Fig. 4. Since the workload is data-oriented, we configured

DIO’s tracer to capture exclusively open, read, write, and

close syscalls. Client threads are represented as db_bench,

while rocksdb:high0 respects to the flushing thread, and

the remainder (rocksdb:lowX) to compaction threads.

By observing the syscalls submitted over time by different

RocksDB threads, one can identify performance contention.

Namely, as shown by the highlighted red boxes, when multiple

compaction threads submit I/O requests, the number of syscalls

of db_bench threads decreases, causing an immediate tail

latency spike perceived by clients, as depicted in Figs. 3 and 4

(in intervals 1 and 3 , at least 5 compaction threads submit

requests). When fewer compaction threads perform I/O, the

performance of db_bench threads improves both in terms of

tail latency and throughput (in intervals 2 and 4 , only 1 to

2 compaction threads are performing I/O).

If one complements the previous observation with knowl-

edge of how Log Structured Merge-tree (LSM) KVSs work,

the problem becomes clear: RocksDB uses foreground threads

to process client requests (db_bench threads), which are

enqueued and served in FIFO order. In parallel, back-

ground threads serve internal operations, namely flushes

(rocksdb:high0) and compactions (rocksdb:lowX).

Flushes ensure that in-memory key-value pairs are sequentially

written to the first level of the persistent LSM tree (L0),

and these can only proceed when there is enough space at

L0. Compactions are held in a FIFO queue, waiting to be

executed by a dedicated thread pool. Except for low-level com-

5
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Fig. 4: Syscalls issued by RocksDB over time, aggregated by thread name. db_bench includes the 8 client threads, rocksdb:low[0-6]
refers to each compaction thread, and rocksdb:high0 refers to the flush thread.

TABLE II: Average execution time and standard deviation for 3
independent runs of RocksDB.

vanilla sysdig DIO strace

Average execution time 03h48m 03h56m 05h12m 06h30m

Standard deviation ±1.2m ±1.7m ±2.4m ±4.6m

Overhead 1.04× 1.37× 1.71×

pactions (L0→L1), these can be made in parallel. A common

problem of compactions, however, is the interference between

I/O workflows, generating latency spikes for client requests.

Specifically, latency spikes occur when client threads cannot

proceed because L0→L1 compactions and flushes are slow

or on hold, which happens, for instance, when several threads

compete for shared disk bandwidth (creating contention). This

is precisely the phenomenon identified in SILK, which can

negatively impact the response time and even the availability

of KVSs and services that use them [27], [28], and that can

be observed with DIO without any code instrumentation.

D. Performance impact and I/O events handling

To understand the performance impact induced by DIO

when intercepting I/O syscalls, we selected the RocksDB use

case, which includes a benchmark, and measured the average

execution time of three independent runs.

Performance analysis. Table II compares the vanilla deploy-

ment (i.e., without tracing its execution) with DIO, strace [10]

– a widely used syscall tracer, and Sysdig [14] – a state-of-

the-art eBPF-based syscall tracer.

Executing the vanilla setup requires approximately 3 hours

and 48 minutes. Compared to vanilla, Sysdig imposes the

smallest overhead (1.04×), using 8 minutes more to execute,

while strace has the highest overhead (1.71×), lasting for

more 2 hours and 42 minutes. DIO increases performance

overhead by 1.37×, needing extra 1 hour and 16 minutes when

compared to Sysdig, but saving up to 1 hour and 18 minutes

regarding strace.

The difference between strace and the two eBPF-based

tracers (i.e., sysdig and DIO) can be explained by the underly-

ing tracing technology. The trap mechanism used to intercept

syscalls and the context switching done by strace impose

considerable overhead over the targeted application [11].

Regarding the eBPF-based tracers, Sysdig presents smaller

performance overhead than DIO, but it also reports less

information to users. Namely, while DIO is unable to report

file paths for up to 5% of the collected events (due to discarded

events), Sysdig is unable to report these for 45% of the events.

As expected, making more information available to the user

induces a higher performance penalty in the applications’

execution time.

I/O events handling. As discussed in §II, DIO uses a

fixed-sized ring buffer to collect information at user-space,

which was configured with 256 MiB per CPU core for these

experiments. When this buffer is full (i.e., if kernel processes

are producing I/O events to the ring buffer at a faster pace than

the user-space processes can consume them), new I/O events

being intercepted at the kernel level are discarded.

For the RocksDB experiments, given its intensive I/O be-

havior, 3.5% of the syscalls (≈19M of 549M) were discarded

at the ring buffer and, therefore, not stored at DIO’s backend.

E. Summary

The previous use cases demonstrate DIO’s capabilities for

diagnosing distinct I/O patterns, which enables users to ob-

serve applications’ I/O behaviors, confirm known issues, and

validate the correction of their fixes. Moreover, our integrated

tracing and analysis pipeline allows users to observe these I/O

patterns without resorting to code instrumentation or needing

to manually combine multiple tools.

Our preliminary experimental results show that DIO can

collect, parse, and forward to the analysis pipeline all the

required tracing information while imposing reduced perfor-

mance overhead. Further, despite the discarded I/O events in

RocksDB, we show that DIO is still able to pinpoint resource

contention and help diagnose its root cause. Moreover, un-

like in strace and sysdig, DIO’s traced information is made

available for visualization as soon as it is intercepted and

transmitted to the backend component.
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IV. RELATED WORK

I/O tracing. Storage I/O diagnosis is often done by captur-

ing applications’ requests in user-space through source code

instrumentation [6]–[9]; through middleware libraries [29],

[30] that are restricted to specific sets of applications (e.g.,
LD PRELOAD only works with dynamic libraries); or at lower

kernel layers [5], [19], [30], such as the Virtual File System,

where optimizations like I/O merging make it impossible to

observe the exact requests submitted by applications.

To intercept I/O operations non-intrusively and closer to

the requests made by applications, other solutions rely on the

syscall interface. As shown in Table III, these explore distinct

tracing technologies, including ptrace ([10], [17]), eBPF ([4],

[14], [16]), LTTng ([3], [15], [31]), and auditd ([18]), which

allow gathering information related with the entry and exit
points of syscalls, including their arguments, return value,

timestamps, PIDs, etc. Similar to DIO, some tools enrich

traced data with additional information such as the process
name ([4], [14], [16], [18]), which is useful for observing the

I/O patterns at §III-B, and §III-C. However, DIO is the only

tool that collects file offsets, which are crucial for diagnosing

the use case presented in §III-B.

Only CaT [4], Tracee [16], and DIO aggregate the infor-

mation contained at the entry and exit points of each syscall

into a single event, thus simplifying its posterior analysis. This

is done at kernel-space to reduce the data transferred to user-

space. Further, these are the only tools, along with strace [10]

and Sysdig [14], that support filtering at the tracing phase.

Integrated analysis pipeline. Several solutions only cover the

tracing step, leaving the integration with analysis pipelines

to be done by users [10], [14]–[16]. Other tools provide

modules for automating the analysis of traced data but follow

an offline approach, where this data needs to be stored first

and, only later, it is parsed and provided as input to the analysis

pipeline [3], [4], [17], [31]. Only DIO and Longline [18]

automatically parse and forward traced events to the analysis

pipeline by following an inline (near real-time) approach.

Syscall analysis. Some of the existing tools support anal-

ysis modules specialized for their concrete use cases (e.g.,
causality [4], [17], security analysis [18]), which only consider

specific information collected from traces (e.g., syscall types).

Therefore, these do not provide the flexibility to implement

custom analysis algorithms nor enable users to access and

explore other information contained in the collected I/O traces.

On the other hand, solutions similar to DIO that support

customizable analysis fail to capture relevant information to

diagnose the use cases discussed in this paper [3], [31].

DIO provides users access to the complete set of captured

information (e.g., syscall type, arguments, offsets), allowing

them to build new algorithms over the data fields that are

more relevant to their analysis goals.

Syscall visualization. DIO offers predefined representations

that automatically summarize and allow the visualization of

the I/O patterns discussed in the paper. Moreover, our tool

enables users to create new visualizations commonly sup-

TABLE III: Comparison between DIO and other solutions in terms
of: captured tracing information, filtering capabilities, tracing and
analysis integration (O-offline, I-inline), analysis customization, and
predefined visualization support. While some tools are able to trace
(T) the information required for the paper’s use-cases, only DIO
provides users with the analysis (A) capabilities to diagnose them.
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ported by other diagnosis solutions (e.g., tables, pie charts,

histograms, heatmaps, time series) [3], [18], [31].

V. FUTURE DIRECTIONS

By intercepting applications’ I/O syscalls in a non-intrusive

way and automatically parsing and forwarding the collected

data to an analysis pipeline, DIO saves users the time needed

to understand the applications’ source code, instrument the

relevant parts, and manually parse the resulting data.

While the current prototype already provides relevant and

summarized information about the targeted application, it

would be interesting to further simplify the analysis process for

users with, for instance, new automated correlation algorithms.

Therefore, as a future direction, we intend to explore the

Elasticsearch query API and build a collection of correlation

algorithms that can, for instance, quickly identify the ineffi-

cient behaviors observed in the aforementioned applications.

Moreover, we plan to expand DIO’s scope to showcase its

capabilities for exploring other applications, even when users

are unfamiliar with these, while potentially uncovering new

I/O patterns and unidentified issues regarding the performance,

dependability, correctness, and security of such applications.

Finally, we aim to analyze the performance overhead im-

posed by DIO over targeted applications in more detail and

study new optimizations that minimize this penalty and reduce

the number of I/O events discarded at the tracing phase.

VI. CONCLUSION

This paper presents DIO, a generic tool for observing and

diagnosing I/O interactions between applications and in-kernel

POSIX storage systems. Through a pipeline that automates

the process of tracing, filtering, correlating, and visualizing

millions of syscalls, and by enriching the information provided
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by these with additional context, DIO helps users observing

I/O issues while reducing the search space for finding their root

cause when, for instance, source code inspection is required.

Our experiments with two widely-used systems show that

DIO provides key information for observing erroneous I/O

access patterns that lead to data loss, and identifying resource

contention in multi-threaded I/O that leads to high tail latency.
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