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Abstract—Modern supercomputers host numerous jobs that
compete for shared storage resources, causing I/O interference
and performance degradation. Solutions based on software-
defined storage (SDS) emerged to address this issue by coordi-
nating the storage environment through the enforcement of QoS
policies. However, these often fail to consider the scale of modern
HPC infrastructures.

In this work, we explore the advantages and shortcomings of
state-of-the-art SDS solutions and highlight the scale of current
production clusters and their rising trends. Furthermore, we
conduct the first experimental study that sheds new insights
into the performance and scalability of flat and hierarchical SDS
control plane designs.

Our results, using the Frontera supercomputer, show that a
flat design with a single controller can scale up to 2,500 nodes
with an average control cycle latency of 41 ms, while hierarchical
designs can handle up to 10,000 nodes with an average latency
ranging between 69 and 103 ms.

Index Terms—Software-defined storage, scalability, control
plane, QoS

I. INTRODUCTION

As HPC facilities move towards the exascale era, we are
witnessing a significant increase in the computational power
of supercomputers, due to better hardware but also due to
the increase in the number of compute nodes. For instance,
Frontier and Aurora supercomputers, operating at 1.206 and
1.012 exaFLOPS, have 9,408 and 10,624 compute nodes,
respectively [1, 2]. This scale makes managing supercomputers
increasingly harder, in some cases, compromising the perfor-
mance and quality-of-service (QoS) for user jobs [3, 4].

Indeed, a known issue that we explore in this paper is
related to I/O contention caused by having multiple jobs
simultaneously accessing shared HPC storage resources [5]–
[7], typically exposed through a Parallel File System (PFS),
such as Lustre, BeeGFS, among others [8, 9].

Intuitively, as the number of compute nodes increases, so
does the number of simultaneous jobs executing and accessing
the shared PFS. Furthermore, as supercomputers are requested
more and more to run data-centric workloads (e.g., DL and
LLM training), I/O contention becomes even more aggravated
as these jobs run for long periods of time and require consecu-
tive data and metadata accesses to the PFS [10]–[13]. Although
numerous solutions are proposed to ensure better storage QoS
for HPC jobs, they do not address several challenges that are
particular to HPC infrastructures.
Intrusive to critical HPC components. Systems like
GIFT [14], CALCioM [15], and TBF [4] mitigate storage per-

formance interference and variability by modifying core layers
of the HPC I/O stack, such as I/O libraries, job schedulers, and
the PFS. These are intrusive approaches that require profound
code refactoring over critical software components, increasing
the work needed to maintain and port them to new platforms.

Static and uncoordinated control. On the other hand, solu-
tions like OOOPS [16] transparently intercept and rate limit
POSIX requests from the application side, thus not requiring
changes to core layers of the HPC software stack. However,
these operate as isolated instances that are agnostic of other
jobs in the system, being unable to coordinate the requests
submitted from all jobs to the PFS. Further, these also do not
consider that HPC environments are highly dynamic, with jobs
frequently entering and leaving the system, each with specific
I/O patterns. These factors can lead to severe I/O contention,
performance interference, and poor resource usage.

To overcome these challenges, several solutions based on
software-defined storage (SDS) are proposed, providing non-
intrusive, dynamic, and coordinated control over all HPC jobs,
ensuring that storage QoS policies are met at all times [17,
18]. In detail, the SDS paradigm proposes the separation
between how jobs’ data is intercepted and manipulated, and
how policies are ensured at the HPC infrastructure, which
is achieved through two distinct planes of functionality —
the control plane and the data plane, as shown in Fig. 1.
The data plane is divided into stages residing at compute
nodes and sitting between the job (i.e., application) and the
PFS client. Stages transparently intercept and rate limit I/O
requests according to specific policies defined by the control
plane (e.g., limit I/O bandwidth and/or number of metadata
operations submitted to the PFS). The control plane acts as an
independent service with cluster-wide visibility. It orchestrates
all stages, meticulously coordinating their actions through
control algorithms to ensure holistic storage policies (e.g., I/O
priority, fairness) across the HPC infrastructure.

However, current research on SDS systems mainly focus
on the data plane counterpart, leaving important decisions
about the control plane’s design unexplored, especially when
it comes to its scalability. While several works express the
importance of having a scalable design for the control plane,
most of them handle it as an orthogonal challenge [19, 20].
In fact, the few solutions addressing this challenge do not
provide empirical evidence of the benefits of their designs at
scale, conducting experiments with only a few dozen nodes.
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Fig. 1: Typical SDS design applied over HPC infrastructures.

As such, this paper presents the first experimental study
that empirically demonstrates the scalability and performance
implications of state-of-the-art control plane architectures. The
main insight of this paper is that such an experimental study,
while accounting for HPC infrastructures of different sizes, is
key to better understand the current limitations of SDS systems
and their applicability to large-scale supercomputers.

In detail, the paper provides the following contributions. We
leverage the Cheferd control plane, a state-of-the-art storage
controller, to implement flat and hierarchically distributed
designs [18]. Then, we conduct an experimental evaluation
under synthetic workloads comparing the scalability of both
architectures for infrastructures of different sizes (i.e., varying
number of compute nodes). Our study is the first to assess
the scale of these two designs for infrastructures with up to
10,000 nodes.

Our results show that a single-node flat control plane can
ensure QoS for up to 2,500 nodes, with a latency under
41 ms for each control cycle.1 For larger infrastructures, a
hierarchical design is necessary. Our results show that this
design can ensure QoS for up to 10,000 nodes, with latency
ranging from 69 ms and 103 ms depending on the number of
controllers used.

II. MOTIVATION AND RELATED WORK

In this section, we overview the landscape of HPC infras-
tructures in terms of scale and maximum performance, and
discuss the state-of-the-art of SDS control planes.

A. Modern HPC Infrastructures

To better understand the sheer magnitude of modern su-
percomputers, Table I highlights some of the HPC systems
included in the Top500 [21] list (June 2024), which ranks the
500 supercomputers by their performance (i.e., according to
the results of running the LINPACK Benchmark [22]).

In the first place, the Frontier supercomputer [1], with
1.206 EFlop/s, is located at the Oak Ridge National Laboratory

1A control cycle considers the time needed for the control plane to collect
metrics from all data plane stages, compute the best strategy to ensure the
desired QoS strategy, and enforcing the necessary rules over the stages.

TABLE I: Supercomputers Top500 rank, peak performance, number
of nodes, and installation year.

System Rank Rmax (PFlop/s) Number of nodes Year

Frontier [1] 1 1,206 9,408 2021
Aurora [2] 2 1,012 10,624 2023
Fugaku [23] 4 442 158,976 2020
Summit [24] 9 148.6 4,608 2018
Frontera [25] 33 23.52 8,368 2019

and comprises a total of 9,408 compute nodes. It is followed by
the Aurora system [2] from the Argonne National Laboratory,
with 1.012 EFlop/s and a total of 10,624 compute nodes.

Interestingly, the Fugaku supercomputer [23], achieving
442 PFlop/s in this benchmark, is one order of magnitude
larger than the previous supercomputers, comprising 158,976
compute nodes.2 Even when considering older petascale
systems such as Summit [24] from Oak Ridge National
Laboratory (148.6 PFlop/s) and Frontera [25] from TACC
(23.52 PFlop/s), we can see that the number of compute nodes
is in the order of thousands (4,608 and 8,368, respectively).

In summary, modern supercomputers are operating with
thousands of compute nodes, and the tendency is for this
number to increase in the future. Moreover, ARM-based
systems are expected to further increase this scale, as observed
with the Fugaku supercomputer, which operates with over a
hundred thousand nodes.

Given this scale, it is clear why HPC centers have been
struggling to efficiently manage the shared load at their PFS
systems [4, 14, 16, 26], especially when a majority of these
nodes are running demanding data-intensive workloads (e.g.,
DL, LLM).

B. SDS and Scalability

The need to provide better storage services for distributed
infrastructures, such as those of cloud computing and HPC
infrastructures, motivated the emergence of distinct SDS so-
lutions over the last years [17]. Interestingly, these solutions
can be used to enforce a wide scope of objectives (i.e., storage
policies) such as I/O bandwidth guarantees [19, 27], I/O
prioritization [19, 28]), I/O routing [29], caching [29, 30], data
reduction [27], and data encryption [27].

Despite having disparate storage objectives, all these works
follow a decoupled design (Fig. 1) where data plane stages
mediate, in isolation, the I/O flow between applications and the
storage system, while implementing the necessary mechanisms
(e.g., caching, I/O rate limiting, encryption, compression).

The control plane is then responsible for ensuring high-level
storage policies (e.g., ensure I/O fairness across jobs, prioritize
some jobs, encrypt data for a given set of applications) by
holistically monitoring and coordinating the different data
plane stages placed across the compute nodes where jobs are
running. The control plane must, therefore, implement control
algorithms that collect I/O metrics from data plane stages,
compute an optimal set of rules, and enforce such rules at

2In some other benchmarks, such as HPL-AI, Fugaku reaches exascale
performance.
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Fig. 2: Centralized control plane design.

the stages. For example, a control algorithm may receive the
current IOPS handled by each stage, compute the fair share
of IOPS for optimal usage of the underlying storage system,
and enforce this rule individually at each stage. These three
phases (i.e., collect, compute, and enforce), are periodically
repeated (e.g., every second) to ensure storage policies are
met at all times, even under workload and system variations.
The periodicity of these control cycles determines how fast
the control plane reacts to changes in the system, usually
being set by the system administrator. The latency of these
cycles determines how fast the control plane reconfigures new
policies in the system.

Monitoring and coordinating large-scale HPC infrastruc-
tures (as those depicted in Table I) is, therefore, a complex
task that must be handled by the control plane. However, this
is often overlooked in the state-of-the-art. We next summarize
the two main designs followed for the control plane of current
solutions. Figs. 2 and 3 depict two examples of these designs.
Centralized and flat designs. Many solutions discuss that, al-
though exposed as a logically centralized service, their control
planes need to be physically distributed, implementation-wise,
for scale and fault tolerance purposes [19]. However, most
of these works leave the scalability details of their designs
as orthogonal work. For instance, IOFlow’s [19] centralized
control plane is designed for small-to-medium data centers
(i.e., tens to hundreds of nodes), deferring the exploration of
scaling for larger data centers to future work.

Crystal [27] implements a flat design in which the control
plane can be composed of multiple controllers, each respon-
sible for a different set of applications and storage policies.
Controllers can be dynamically provisioned or removed as new
applications or policies arrive or leave the infrastructure. As
controllers manage independent storage policies, these do not
need coordination among each other. Crystal’s control plane
scalability is evaluated only with tens of nodes.

On the other hand, in Mirador [31], coordination between
controllers is required for I/O load balancing decisions across
the nodes of cloud-based storage solutions. Since this work
is directed at storage appliances (i.e., NFS-based storage
systems), the scale of the solution is significantly smaller than
when considering large-scale HPC infrastructures.
Hierarchical designs. Few solutions deviate from a flat
organization, designing the control plane as a hierarchy of
controllers [18, 29, 32, 33]. This hierarchy follows a tree-based
topology. Controllers at the top level of the tree are responsible
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Fig. 3: Hierarchical control plane design.

for executing the control algorithms and propagating enforce-
ment rules across controllers at the remaining levels of the
hierarchy. Controllers at the bottom level directly communicate
with the data plane stages, enforcing the QoS rules defined by
the upper levels of the hierarchy. The latter can also perform
part of the computation (e.g., aggregate metrics from data
plane stages or controllers at lower tree levels), reducing the
work that controllers at the top tree level must perform.

CLARISSE [32] and SIREN [33] control planes are specif-
ically designed for large-scale HPC infrastructures and both
propose a hierarchical design to address the scalability and
performance requirements of these infrastructures. However,
the experimental evaluation of these systems does not surpass
the 1,024 compute node mark.

Cheferd [18], also designed for HPC systems, provides
the notion of local controllers, aggregating metrics collected
at each compute node, and a global centralized controller
receiving these metrics and ensuring global QoS objectives.
Metric aggregation is only possible when multiple data plane
stages reside at the same node, while different compute nodes
are all managed by the global controller. Cheferd’s scalability
is again only tested for up to 1,000 nodes.

C. Summary

As supercomputers grow in size, it becomes fundamental
to effectively control the I/O requests submitted by several
thousands of compute nodes to the shared PFS. Although SDS
is a promising solution to achieve such a goal, the scalability of
the control plane has been largely overlooked in the literature.
In this paper, we aim to give the first steps towards a better
understanding of flat and hierarchical control plane designs
and to answer the following open questions.

• What is the scalability of single-node, flat-based control
planes?

• Can hierarchical designs ensure better scalability than
flat-based ones?

• What is the performance impact of adding more con-
trollers across the hierarchy?

• How are the different phases of the control cycle impacted
by each control plane design?
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III. SCALABILITY STUDY OF SDS CONTROL PLANES

To answer the previous open research questions, we next
detail the experimental methodology of our study and then
present and discuss its main results.

A. Experimental setup

All experiments were conducted on compute nodes of the
Frontera supercomputer [25], equipped with two 28-core Intel
Xeon processors, 192 GiB of RAM, a single 240 GiB SSD,
and a Mellanox InfiniBand HDR-100 network card, running
CentOS 7.9 with the Linux kernel v3.10. Compute nodes are
connected to a shared Lustre file system (PFS).

B. Designs under testing

Our study compares two control plane implementations
mimicking state-of-the-art flat and hierarchical designs.
Flat. The implementation of the flat centralized design is
based on a simplified version of the state-of-the-art Cheferd
control plane [18]. As depicted in Fig. 2, the global controller
is deployed in a single compute node and has system-wide
visibility, being able to orchestrate I/O workflows at the HPC
infrastructure. The control logic (i.e., control algorithms) is
implemented in a feedback control loop, where it continuously
collects metrics from data plane stages (e.g., I/O bandwidth
of each compute node), verifies if QoS policies are being
met, and computes and enforces new storage rules for the
uncompliant data plane stages. Moreover, as depicted in Fig. 2,
each compute node comprises a single data plane stage to
manage its I/O requests.
Hierarchical. To achieve a hierarchical design, we extended
the Flat design prototype by introducing a new layer of
controllers, named aggregators. As depicted in Fig. 3, each
of these controllers is deployed in individual compute nodes,
logically sitting between the global controller and the data
plane stages. Their role is to disseminate requests sent by the
global controller to the stages, and to aggregate and send back
those results to the global controller.

The goal of this design is to understand the performance
implications of adding an extra level of controllers that inde-
pendently aggregate the metrics from several compute nodes
and send pre-processed information to the global controller,
offloading some of the processing that the latter needs to do.

C. Workloads

Computation algorithm. At the global controller, we run the
proportional sharing without false allocation (PSFA) state-of-
the-art control algorithm [18]. Briefly, the algorithm allows
assigning different rates of I/O operations (IOPS) per job
(i.e., it allows defining jobs with more IOPS than others to
ensure different QoS levels), while guaranteeing that jobs
running simultaneously never surpass the maximum rate of
operations that can be handled efficiently by the PFS. The
latter value is defined by system administrators. Furthermore,
the algorithm is aware of the actual I/O rate submitted by
each job, proportionally assigning leftover IOPS to active jobs

whenever available, preventing under- and over-provisioning
of shared storage resources.

Across all experiments, we run the algorithm under a
stress workload, where the control plane continuously ex-
ecutes control cycles without interruption. In each control
cycle, metrics are collected from data plane stages, the PSFA
algorithm executes, and new rules are sent to all stages. This
workload ensures that we stress test the control plane to better
understand its scalability and performance characteristics, a
common approach followed by other benchmarks [34]–[36].
Compute nodes workload. At the compute nodes, we im-
plemented a lighter version of a data plane stage that mimics
the behavior of a regular stage without the need to run real
applications. We refer to them as virtual stages, and their goal
is to reply back to the control plane every time it requests
metrics (i.e., IOPS for data and metadata operations in this
study). Since the PSFA algorithm is working under a stress
workload, regardless of the value of each collected metric,
it must run its computation to all collected metrics and send
enforcement actions to all virtual stages.

With virtual stages we can accurately mimic the payload of
realistic deployments while running several instances of these
at the same compute node to simulate larger infrastructures
(i.e., with thousands of compute nodes).

D. Methodology

Considering that we want to explore the scalability of stor-
age controllers in modern HPC infrastructures with thousands
of nodes, it is unfeasible to have a dedicated supercomputer of
such size to run real applications. Thus, we instead simulate
the necessary scale by deploying several virtual data plane
stages per compute node (i.e., 50 virtual stages). Aggregator
controllers and the global controller run on separate compute
nodes. The number of compute nodes used varies with the
scale of each experiment.

Although we deploy several virtual data plane stages per
compute node, from a logical point of view, either from
aggregator controllers or even the global controller, these
are treated as being deployed in separate compute nodes.
Since virtual stages use few computational resources, our
experiments are not impacted by having multiple instances
in a single compute node.

For each experiment, after deploying the necessary con-
trollers, the global controller executes the PSFA algorithm for
at least 5 minutes. As further shown in Section IV, since the
average control cycle latency is at the ms scale, the overall
execution time is enough to get normalized results. Each test
was repeated at least 3 times. For each test, we collected the
total control cycles completed by control plane, the average
latency of control cycles, and a breakdown of the latency
across the different control phases (namely, collect statistics,
compute PSFA, enforce rules).

Moreover, for each compute node where experiments were
conducted, we collected resource usage metrics (using the
REMORA resource usage collection tool [37]), namely CPU,
memory, and network usage.
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Fig. 4: Average latency of control cycles for a flat control plane
design with a single global controller managing an increasing
number of compute nodes.

IV. EXPERIMENTAL RESULTS

We start by presenting the results for the flat control plane
design and then proceed to analyze the main findings for the
hierarchical controller.

A. Flat controllers

To assess the performance and scalability of a single-node,
flat-based control plane (Fig. 2), we measured the average
latency of control cycles for an increasing number of compute
nodes, namely 50, 500, 1,250 and 2,500.3 The results for these
experiments are depicted in Fig. 4, where we also breakdown
the latency for the different phases of a control cycle. The
standard deviation for all the results discussed in our study is
below 6%.

As expected, having a single controller managing more
nodes leads to an increase in the average latency of control
cycles, increasing from 1.11 ms for 50 nodes, to 40.40 ms
for 2,500 nodes. When observing the latency breakdown for
each control cycle, the enforce phase is more demanding than
the collect phase, not only because the message payload is
larger (which involves more data being transmitted across the
network) but also due to the need for coordinating to which
compute node each storage rule should be submitted. Further-
more, the time used in each phase increases proportionally
with the number of nodes.

Despite the significant increase in latency, a single controller
running the PSFA algorithm is able to manage up to 2,500
compute nodes under 41 ms. However, besides the perfor-
mance overhead induced by collecting metrics, computing, and
enforcing rules over data plane stages, the control plane must
also manage a large pool of network connections to these.
Inevitably, a single controller is limited by the number of
physical connections, which, in the case of the Frontera node
where we deploy the controller, can only handle up to 2,500

3As discussed in Section III, we assume that each compute node is running
a single data plane stage.

TABLE II: Resource utilization for CPU, memory, and network
consumption for a flat control plane with a single global controller.

Controller Resource
Setup

# Compute Nodes
50 500 1250 2500

Global

CPU (%) 6.07 9.58 10.39 10.34
Memory (GB) 0.07 0.31 0.64 1.18
Transmitted (MB/s) 5.67 8.74 8.74 9.73
Received (MB/s) 3.74 5.75 5.74 5.36

concurrent connections. This is a limitation of the networking
equipment, whose value may change but that will also be
present in other systems.

Table II shows the resource usage (namely, CPU, memory,
and network bandwidth) for the single global controller. We
observe an increase in resource usage as the number of
compute nodes handled by the controller increases. Never-
theless, even when considering 2,500 compute nodes, CPU
and memory usage is below 11% and 1.2 GB. Also, network
bandwidth is under 9.73 MB/s and 5.36 MB/s for sent and
received data, respectively.

Observation #1. A flat control plane with a single global con-
troller is a suitable design for small to medium infrastructures
where one reacts to I/O workload variations at the tens of
milliseconds or larger time windows.

Observation #2. Having a single controller performing all
the computation and managing all network connections to
compute nodes leads to a scalability bottleneck, mainly set by
the physical limitations of the hardware.

B. Hierarchical controllers

To assess the performance and scalability of the hierarchical
control plane (Fig. 3), we measured the latency of control
cycles for 10,000 compute nodes with increasing number of
aggregators, namely 4, 5, 10, and 20. Given that each Frontera
node can handle up to 2,500 physical connections, we set the
minimum number of aggregators to 4.

Scaling for 10,000 compute nodes. With the extra control
level (i.e., aggregators) one can now validate the scalability of
the hierarchical design for up to 10,000 compute nodes. We
start with the most straightforward setup, including 4 aggre-
gator controllers, each collecting metrics and enforcing rules
to disjoint sets of 2,500 compute nodes (stages). The global
controller receives aggregated metrics from the aggregators,
computes the PSFA algorithm, and sends back the sets of
enforcement rules to the aggregator nodes.

As depicted in Fig. 5, with 4 aggregators, the control
plane can scale up to 10,000 nodes with a control cycle of
approximately 103 ms. As expected there is a latency increase
mainly due to the amount of compute nodes being managed.
Interestingly, although the number of nodes increases 4×, the
latency only doubles when compared to the hierarchical de-
sign, with a single aggregator managing 2,500 nodes (Fig. 6).
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Fig. 5: Average latency of control cycles for the hierarchical design
managing 10,000 compute nodes with an increasing number of
aggregator controllers.

As shown in Table III, using 1 global controller and 4
aggregators increases the overall resource usage when com-
pared to a single-node flat control plane (Table II). This is
an expected result as the number of compute nodes being
managed increases from 2,500 to 10,000. For instance, mem-
ory usage increases since more metadata needs to be stored
at the global controller. Interestingly, CPU consumption is
now split between the global and aggregator controllers, while
the latter requires more CPU as aggregating metrics from
2,500 nodes is more compute-intensive than running the PSFA
algorithm. Network bandwidth is also split across the two
types of controllers. The global controller receives aggregated
metrics, explaining the lower network bandwidth for received
bytes. On the other hand, transmitted bandwidth is higher as
this controller must calculate rules for all data plane stages and
transmit these to the corresponding aggregator controllers.

Observation #3. An hierarchical design, with 4 aggregator
controllers, is able to scale for large infrastructures (up to
10,000 nodes) and react to I/O workload variations at the
hundreds of milliseconds or larger time windows.

Increasing the number of aggregator controllers. We also
compare the impact of increasing the number of aggregators in
the hierarchical design, as shown in Fig. 5. For all experiments,
the number of compute nodes remains the same, as we only
vary the subset of nodes that each aggregator is responsible for.
Specifically, with a setup of 4 aggregators, each must handle
a disjoint set of 2,500 compute nodes, while for a setup with
20 aggregators, each handles a set of 500 nodes.

Results show that as the number of aggregators increases,
while the latency for compute phase latency remains approx-
imately the same, it decreases for the collect and enforce
phases. This is expected as distributing the load across more
controllers enables more parallelism in metrics collection and
rule enforcement at the data plane stages.

With 10 aggregators, one can reduce the average latency

TABLE III: Resource utilization for CPU, memory, and network
consumption for a hierarchical design managing 10,000 compute
nodes. Results depict usage for the global controller and the average
resource consumption per aggregator controller.

Controller Resource
Setup

# Aggregator Controllers
4 5 10 20

Global

CPU (%) 2.55 2.81 3.22 3.52
Memory (GB) 3.52 3.56 3.53 3.60
Transmitted (MB/s) 4.39 4.73 5.66 6.08
Received (MB/s) 1.45 1.58 1.82 1.98

Aggregator

CPU (%) 3.95 3.4 1.94 0.95
Memory (GB) 0.16 0.13 0.08 0.04
Transmitted (MB/s) 4.53 4.13 2.4 1.31
Received (MB/s) 2.53 2.31 1.34 0.73

of control cycles to under 80 ms, while with 20 aggregators
latency is kept below 70 ms. However, this decrease in latency
comes with the expense of requiring additional servers to run
the control plane service.

Regarding resource usage, we observe that the global con-
troller uses more resources when more aggregator controllers
are employed (Table III). This is expected since the amount
of work and metadata being handled by the global controller
increases with the number of aggregators being managed. On
the other hand, the work done at each aggregator decreases
as the 10,000 compute nodes are distributed across more
controllers. This trend is also visible for the consumption of
memory and network bandwidth.

Observation #4. Increasing the number of aggregator con-
trollers reduces the average latency of control cycles. For
highly dynamic I/O workloads (e.g., burstiness) this can be an
important feature to ensure sustained storage QoS.

Observation #5. While adding more aggregators benefits la-
tency, it requires further computational resources for the control
plane service. Therefore, there is a trade-off between the amount
of resources and control cycle latency that must be chosen
according to the needs of the targeted infrastructure.

Overhead of adding more control levels. We now analyze
the overhead of adding aggregator controllers to the critical
path of control cycles. Fig. 6 compares the performance of
both control designs (single-node flat controller vs. hierarchical
controller with a single aggregator) for 2,500 compute nodes.

As expected, there is an increase in latency, although small,
when moving to the hierarchical design. Latency increases
from approximately 41 ms to 53 ms, which stems from the
collect and enforce phases due to the additional network
hop going through the aggregator controller. Interestingly, we
observed a decrease in the latency of the compute phase.

As depicted in Table IV, we observe a significant decrease
in CPU consumption at the global controller, which is now
moved to the aggregator, when considering the hierarchical
design. This happens because metrics from the 2,500 com-
pute nodes are now merged at the aggregator controller. As
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TABLE IV: Resource utilization for CPU, memory, and network
consumption for the flat and hierarchical (with a single aggregator
node) designs handling 2,500 compute nodes.

Controller Resource Setup

Flat Hierarchical

Global

CPU (%) 10.34 1.15
Memory (GB) 1.18 0.92
Transmitted (MB/s) 9.73 2.36
Received (MB/s) 5.74 0.77

Aggregator

CPU (%) - 7.83
Memory (GB) - 0.22
Transmitted (MB/s) - 8.65
Received (MB/s) - 4.98

previously discussed, this is more expensive, computation-
wise, than running the PSFA algorithm. Network-wise we
see a similar pattern to the one observed in the previous
experiments, where the global controller receives less data as
it was pre-processed by the aggregator controllers.

Observation #6. For a small amount of compute nodes (up
to 2,500), the hierarchical design increases the latency of
control cycles up to 12.3 ms, when compared to the flat one.
Nonetheless, the latency of control cycles remains under 55 ms.

Observation #7. Adding a dedicated control level for aggre-
gating metrics reduces the latency of the compute phase.

V. DISCUSSION

This paper conducted the first study on the scalability of two
widely used control plane designs. Interestingly, our results
show that a single flat controller can run the PSFA algorithm
for up to 2,500 compute nodes under an average latency of
41 ms per control cycle.

To avoid the scalability and hardware limitations of manag-
ing a large pool of network connections, one must move to a
hierarchical design. Our results show that adding an extra con-
trol level responsible for metric aggregation and enforcement
of rules (aggregator controller) incurs minimal performance

overhead, increasing the average latency of control cycles
by approximately 12 ms. With 4 aggregator controllers, the
hierarchical design can scale up to 10,000 nodes while keeping
control cycles latency under 103 ms. Interestingly, adding more
aggregators further reduces the latency to under 69 ms.

Notably, adding more aggregators requires more computa-
tional resources, and therefore, this trade-off must be managed
according to the I/O workloads and infrastructure require-
ments. Namely, under volatile and bursty workloads and/or
when the control plane is required to quickly react and adapt
the QoS rules across several data plane stages, then the control
cycles ideally have the lowest possible latency. On the other
hand, when it is enough to react to workload changes at
larger time-window intervals (e.g., seconds or minutes) and
with some delay when adjusting the necessary QoS rules, then
opting for the minimal amount of aggregators to support the
full set of compute nodes is the best approach to minimize
resource usage.

VI. FUTURE WORK

Based on these results, this preliminary study opens up
multiple interesting research paths. First, there are several
design options for distributed control planes that could be
explored and then included in a future experimental study.
As examples, one could include flat control designs with
multiple controllers that coordinate their actions (e.g., through
coordination protocols), and can each orchestrate different sets
of nodes while maintaining global visibility. As an alternative,
one could also include hierarchical designs that further explore
the processing logic that can be offloaded to aggregator nodes
in order to be able to make independent decisions for the set
of controllers/stages managed by these, thus decreasing the
computational load from the controllers of the top levels of
the tree.

Second, the study could be enriched with further workloads.
We chose to use a synthetic, stress-like workload to understand
the limits of flat and hierarchical designs, but it would be
valuable to study such designs with real workloads and appli-
cations. This would allow us to determine whether our system
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adapts well to dynamic workloads and assess the impact of the
control plane on the execution of the applications themselves.

Another important aspect to explore, which has also been
ignored in the literature, is the dependability of the control
plane. This is an important aspect since, while the failure of
controllers may not lead to unavailability of the infrastructure
(i.e., the stages will still be mediating I/O requests with
possible outdated rules), it may compromise the guarantees
expected for the storage policies in place.
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