
Geolocate: A geolocation-aware scheduling system
for Edge Computing

João Vilaça, João Paulo, Ricardo Vilaça
HASLab - High-Assurance Software Lab, INESC TEC & U. Minho, Portugal.

Email: {joao.p.vilaca,joao.t.paulo,ricardo.p.vilaca}@inesctec.pt

Abstract—Edge computing has emerged as an important
paradigm that moves the computation and data storage of
distributed services closer to users. While virtualization tech-
nologies, such as containers, have eased the task of running
distributed services in heterogeneous edge hardware, these are
still lacking adequate scheduling and orchestration algorithms
that can indeed place computation near data producers.

We present Geolocate, a generic scheduler for workload
orchestration and distribution in containerized edge deployments.
As the main novelty, the proposed solution takes into account
both the available computational resources and the geographical
location of nodes when deploying service components in these.

A preliminary experimental evaluation of our prototype shows
that Geolocate scheduling time is on par with other schedulers
such as the KubeEdge default scheduler. Moreover, Geolocate
shows average gains, even on single isolated requests, of about
62% in the response times of scheduled services.

I. INTRODUCTION

The Edge Computing paradigm aims at leveraging the
computational and storage capabilities of IoT devices (also
referred as Edge nodes), while resorting to Cloud Computing
services for more demanding processing tasks that cannot be
done at commodity devices. However, deploying distributed
services across Edge and Cloud nodes raises new challenges
that must be addressed. Namely, the choice of what nodes
run each service component may be critical for ensuring an
efficient service for users [1], [2]. For example, if two critical
components, that must frequently exchange data, are placed in
different geographic locations, the whole performance of the
service will be affected.

Virtualization and orchestration technologies such as Kuber-
netes [3], widely used in industry, are excellent for managing
distributed services running at heterogeneous Cloud nodes [4].
Kubernetes allows to distribute and manage various work-
loads across a wide variety of nodes but is built for cloud
infrastructures, thus not being prepared to accommodate other
processing units, such as Edge devices.

To bridge this gap, KubeEdge was created, aiming to extend
Cloud capabilities to the Edge [5]. Based on Kubernetes,
KubeEdge implements add-ons on the original cluster, net-
working, node management, and data communication. How-
ever, KubeEdge provides simple scheduling algorithms that
only take into account the available resources of nodes when
deploying service components at these. When Cloud and
Edge nodes are running in close geographic locations, the
previous scheduling decisions are sufficient. However, when
these nodes are far away from each other and must frequently

exchange data, the service’s latency is significantly affected
and, consequently, the experience of users.

For example, we can consider the case of a real-time
road data processing service, with sensors that produce large
amounts of information. On one hand, it is important that
the processing workloads are close to the data sources, which
will decrease latencies and the quantity of data sent over the
network. On the other hand, it is possible that the generated
data may fall under specific data protection and privacy
laws, such as the General Data Protection Regulation 2016/67
(GDPR), which limits the transfer of personal data outside the
European Union and European Economic Area.

Therefore, the main goal of this paper, for these geograph-
ically dispersed environments, is to explore, design, and im-
plement new orchestration and distribution systems for hybrid
Cloud and Edge environments, based on geographic location,
service demand, business objectives, laws, and regulations.

Throughout this work, we aim to achieve substantial im-
provements in scalability and quality of service levels by
taking advantage of Edge’s computational resources. In more
detail, the proposed solution must be able to handle various
heterogeneous software and hardware environments and reli-
ably ensure its performance requirements. In particular, the
protocol must be able to establish processing units on Cloud
or Edge nodes, according to the nature of the computation, the
type and geographical location of the data.

To address the previous goals, this paper proposes Ge-
olocate, a generic scheduler for workload orchestration and
distribution across heterogeneous and geographically distant
nodes. In more detail, it provides the following contributions:

• An implementation of a scheduling and placement algo-
rithm based on nodes’ geographic location and resource
availability.

• A fully functional prototype, integrating Geolocale with
KubeEdge, a Edge computing orchestration platform
based on Kubernetes.

• A preliminary experimental evaluation of our prototype
in a real deployment and comparing different scheduling
approaches.

The results show that, under normal cluster conditions,
where data-producing workloads are relatively stable, GeoLo-
cate performs well in data processing times, service response
times and increases network performance, reducing bandwidth
usage and consequently increasing applications throughput. By
reducing latency between data-producing and data-processing

services, Geolocate is able to decrease overall service response
times up to 62%.

II. RELATED WORK

Few studies have addressed the resource allocation and
scheduling problem in hybrid Cloud and Edge environments.

Zenith [1] proposes a utility-aware resource allocation so-
lution for Edge Computing with a decoupled model where the
management of nodes is independent of the service providers.
Dyme [2] is a dynamic microservice scheduling system for
mobile edge computing that is able to minimize the total
network delay and network price. While both enable the
optimization of resource usage and minimize latencies across
nodes, these do not take into account the nodes’ geographic
location in their orchestration decisions.

HYDRA [6] is a decentralized and distributed orchestrator
for containerized microservice applications. While it can man-
age heterogeneous resources across geographical locations and
enables the location-aware deployment of microservice appli-
cations via containerization, it is a completely new solution
implemented from the ground up. Thus, it does not leverage
the additional features (e.g., pod abstraction, support for
different storage drivers and backends, volume management,
maintainability, service discovery, load-balancing, and existing
user base) of mature solutions such as Kubernetes.

Indeed, several frameworks extend Kubernetes cloud capa-
bilities to the edge. Among these, some stand out, such as
MicroK8s [7], a simple low-sized Kubernetes package that
allows users to add edge nodes to a cluster and guarantees
high availability through a consensus algorithm. Akri [8] is
a Kubernetes interface for Edge. Although it dynamically
discovers nodes and provides some management tools, it
leaves many management tasks (e.g., nodes and devices con-
figuration, discovery protocol settings and launch of broker
pods to handle device information) to the user.

Kubernetes Cluster Federation [9] is an orchestrator of
orchestrators, as it is composed of a series of Kubernetes
clusters, and introduces the concept of Cross Cluster Service
Discovery, enabling developers to deploy a service that was
sharded across a federation of clusters spanning different
zones, regions or cloud providers. Despite enabling geographic
distribution of workloads, the Kubernetes Cluster Federation
is, by definition, a multi-cluster, multi-cloud system that can-
not operate in an edge computing paradigm since it assumes
an underlying high-performance network in each cluster.

Another alternative is KubeEdge [5]. It is a fully trans-
parent abstraction for the Kubernetes API, which allows the
management of the cluster with edge nodes with kubectl,
the Kubernetes command-line tool. It ensures fault-tolerant
and highly available communication between all nodes and
provides lightweight agents for the edge.

Given that none of the previous Kubernetes-based solutions
provides geo-location scheduling algorithms, the work pro-
posed in this paper builds on top of KubeEdge to provide such
a solution. We chose this technology because it is efficient,

easy to maintain and endorsed by the Cloud Native Computing
Foundation [10].

III. KUBEEDGE

KubeEdge extends Kubernetes and allows the management
of remote edge nodes and edge applications deployments,
without changing the Kubernetes API. It provides edge con-
trollers for node and workload handling, a custom network
protocol, and a distributed metadata storage, to support system
faults and offline scenarios where edge nodes are not con-
nected to the cloud [5].

As depicted in Figure 1, the EdgeController module is
responsible for managing the edge nodes. It extends the
Kubernetes default controller with edge capabilities, allowing
the API Server to integrate the edge nodes in the cluster.
The network connection between the cloud and edge nodes
is implemented by EdgeHub and CloudHub. These modules
are responsible for assuring a fast and reliable communication
interface between the cluster nodes.

In terms of workloads, edge applications and resources are
configured and controlled by the Edged module, a lightweight
agent that packages all the edge node functionality into one
process. This module is also responsible for launching and
controlling three other modules composing the system, the
EventBus, the DeviceTwin, and the MetaManager. These extra
modules manage all external Edge devices and data handling.

Fig. 1: KubeEdge architecture.

This architecture allows KubeEdge to provide an offline
network mode, assure fault tolerance, and high availability
while efficiently supporting cross-platform and heterogeneous
software and hardware environments. All of these while al-
lowing a simplified development process, with an SDK for
systems and resource management, and maintenance.

One of the main components in KubeEdge clusters is the
Scheduler, a service responsible for attaching pods, the single
most basic instances of a running process in the cluster,
to nodes in the system. For each newly created pod or
unscheduled pod, the Scheduler selects a node to attach the
application and execute it.

However, since one can configure different resource require-
ments for pods (e.g., to define the minimum CPU and memory
necessary for the application to run), existing nodes need to be
filtered according to the availability of these resources. Briefly,

the Scheduler selects a suitable node in a 2-step operation. In
the first, the filtering step, it finds the list of nodes where it is
possible to attach the pod. If the list is empty, this pod cannot
be deployed. When there is more than one possible node, we
enter the scoring step, where the scheduler sorts the remaining
nodes by available resources to choose the most appropriate
for pod attachment.

However, The KubeEdge Scheduler is still a very naive
dynamic resource-provisioning mechanism which only con-
siders nodes’ resource utilization, therefore not being very
effective [11]. For example, when considering two cluster
nodes in two different zones of the planet and a data-producing
workload near the first one, the default scheduler instead of
choosing the first node to minimize network latency, will
ignore this geographic distance aspect and select any of the
nodes. Therefore, this paper proposes the first geolocation-
aware scheduling system for KubeEdge. With a focus on the
geographic location of data-producing workloads, this system
can minimize network latencies when deploying consumer
pods and improve service response times.

IV. GEOLOCATE

Next, we further describe Geolocate’s scheduler design
principles, arquitecture and integration with KubeEdge.

A. Design Principles

Accounting for the existence of a data-producing system
located in a specific geographic location, the scheduler must
be able to, given a corresponding data-processing workload,
calculate the best fitting node for its deployment. The selected
nodes should minimize the geographic location between data
producers and consumers, while improving network latency,
data processing delay, and service response time.

As shown in Figure 2, the scheduler must be aware of
the location of available computing Edge nodes at different
granularities, namely their city, country and continent. When
deploying a data processing workload (Figure 2 - 1), the sched-
uler will allow users to define the location (i.e., city, country,
continent) desired for running their processing workloads, for
instance, closer to the corresponding data producers.

Fig. 2: Geolocator’s design principles.

These user-defined locations can be specified as mandatory.
In this case, if the desired location does not have the necessary
computational resources, the scheduler should return an error
response, and the workload’s deployment should be delayed

until enough resources are available. If locations are specified
as preferred and a node at the desired location is not available,
the scheduler will select the closest node with available
computing resources. After selecting the best node (Figure 2
- 2), the workload will be deployed (Figure 2 - 3).

The scheduling algorithm should also be generic to al-
low integration with different orchestration tools other than
KubeEdge. Namely, it should include internal mechanisms for
abstracting the management of nodes and workloads from the
framework where it is being deployed.

B. Scheduler architecture

Following the specification mentioned above, we defined
several interfaces and modules. The proposed architecture
follows the single-responsibility principle, encapsulating node
and workload information in data structures, facilitating the
system’s extensibility. In Figure 3, we can observe the various
components that make up the Geolocate scheduler.

The scheduler-core component allows the creation of
generic node selection algorithms for workload placement. In
this solution, we present an algorithm that takes into account
the geographic location of nodes (for example, data-processing
and data-producing). It also offers several data structures
for indexing cluster information about nodes and workloads.
Finally, the scheduler-core provides a public interface with all
the necessary methods to manage the cluster nodes and execute
the scheduling algorithm.

Fig. 3: Scheduler architecture

The scheduler-implementation integrates the scheduler-core,
through its public interface, with the target orchestration tool,
in this case, KubeEdge.

The NodeHandler, receiving all node changes made to the
cluster (Figure 3 - A1), whether adding new ones, editing
(including current available resources updates) or removing
existing nodes, is responsible for keeping the Scheduler-core
with up-to-date information through the NodeManager (Figure
3 - A2). In turn, the NodeManager maintains an internal
structure for node management using a map, with geographic
locations of the nodes as keys, to optimize the algorithm search
for nodes in each of the geographical locations.

The PodHandler is responsible for consulting/receiving
cluster information about the existence of service workloads
associated with the Scheduler that are not yet bound to any
node (Figure 3 - B1). When the PodHandler gets any pending

workload, the placement algorithm is executed (Figure 3 - B2).
While no node is found in one of the requested locations, the
algorithm fetches from the NodeManager the nodes from the
next location (Figure 3 - B3), excludes nodes without enough
available resources to support this workload (Figure 3 - B4),
and if any remains, one is selected.

C. Integration with KubeEdge

KubeEdge has a modular architecture that eases the inte-
gration of new components, such as the scheduler proposed
in this paper. Namely, Geolocate’s prototype is composed
by our Scheduler mechanism, integrated with the KubeEdge
cluster through the creation of a new Custom Resource and a
corresponding Controller.

1) Custom Resource: A Custom Resource Definition al-
lows users to create system resource types that do not exist
by default in KubeEdge. Our new custom resource, named
EdgeDeployment, enables users to define the structure of the
resource configuration files where are included several fields
needed for the workloads scheduling process (e.g., the number
of replicas, the mandatory or preferred location, computational
requirements).

2) Custom Controller: A Custom Resource needs to have
an associated Controller that is responsible for ensuring that
resource configurations defined by the user are enforced at
the KubeEdge cluster. Also, the Controller allows updating
(e.g., user submits new parameters for preferred locations for
a given workload) and deleting existing user configurations
being applied at the cluster.

Fig. 4: Scheduler integration with KubeEdge

3) Scheduler: The Scheduler component is responsible for
calculating and selecting the cluster node where the user’s pod
should be placed and inform KubeEdge. The entire process
of deploying and managing the pod on the node is the
responsibility of other KubeEdge components (Figure 4 - 6).

In terms of implementation, the Scheduler subscribes to the
KubeEdge’s Node Informer to receive alerts about all changes
to nodes in the cluster (Figure 4 - A), allowing it to stay up
to date on what nodes exist, what their configurations are, and
what available resources do these have.

Whenever a new node is added to the cluster, or its avail-
able computational resources (e.g., CPU, RAM) are updated,
the Scheduler reads the total resource capacity of the node
and the configurations of the pods running on it. From the
pods’ information about their resources needs, the Scheduler

estimates the total used resources on the node at that time. The
node geographical location is extracted from the node labels,
manually configured by the system administrator, but future
work may include the dynamic calculation of node location in
this step.

Secondly, the Scheduler also subscribes to the Pod Informer
to be notified of new pods that are not bound to any cluster
node and need to be scheduled (Figure 4 - B). When there is a
new pod that needs to be scheduled, the algorithm fetches the
location configuration from the pod specification and iterates
all nodes trying to get any in the selected location (i.e., given
city, country or continent) (Figure 4 - 4).

If the system finds a suitable node, the algorithm finishes
and the Scheduler instructs KubeEdge to bind the pod to that
node (Figure 4 - 5). Otherwise, there are two hypotheses.
If the location was specified by the user as mandatory the
Scheduler throws an error, and the pod remains unbounded
until a suitable node is available or the EdgeDeployment
resource is deleted. If the location was specified as preferred,
the system will lookup up nodes in a broader area, as close
as possible to the desired one. In more detail, if a node is not
available at the requested city, then the algorithm searches for
a free node at the city’s country. If no nodes are available at
that country, then the algorithm checks for an available node at
the corresponding continent. Note that, for a given workload,
a user can specify several cities as viable deployment options.
In this case, the previous algorithm is similar but it searches
first for nodes at the cities, then at all the countries of specified
cities and, finally at the corresponding continents. Since, the
location is just a preference, if a suitable node could not be
found at this point, a random available node in the cluster is
selected. Again, if no nodes are available the Scheduler throws
an error, and the workload’s deployment is delayed until a
node is available or the EdgeDeployment resource is deleted.

V. PRELIMINARY EVALUATION

In this preliminary evaluation stage, we aim to verify that
the use of scheduling algorithms, taking into account the
geographical location of the data to be processed, results
in substantial improvements in application performance and
quality of service.

A. Workloads and collected metrics

The workload used in the experiments is based on a modi-
fied KubeEdge service example, ‘Data Analytics with Apache
Beam’ [12], an analytics service to get data from the MQTT
broker in-stream format and apply rules on incoming data in
real-time.

In more detail, we set up a data-producing application (e.g.,
running at an Edge node) producing messages at a rate of
4 messages per second and submitting them to an MQTT
broker, deployed locally at the same node. Then, a data-
processing application, deployed in another node (e.g, Cloud
server) fetches messages from the broker and processes them,
with a fixed processing delay set to 250ms for each message.

For this simple workload, we assume that the data-
processing application is responsible for actively requesting
data from the broker. Additionally, it fetches one message
at a time and only requests a new one after processing the
previous one. Although this is a simple example, it shows the
advantages of having a location aware deployment strategy, as
discussed next.

We modified the application by creating configuration envi-
ronment variables that allowed us to control workload parame-
ters such as the time between message creation, the number of
messages to create, and the message processing delays. Also,
we measured the time it takes between the production of a
given message (at the data-producing application) to being
completely processed (at the data-processing application).

B. Experimental environment

1) Cluster setup: For all tests, we launched a KubeEdge
cluster using 6 commodity servers. Each node had an i3 CPU
(4 cores at 3.7 GHz), 8 GB of RAM and a 128 GB SSD disk.
Hosts were connected over a shared Gigabit Ethernet network.

For the cluster deployment, we used Kubespray, a tool com-
posed of several Ansible playbooks to automate the process.
First, we initialized the two cloud nodes, one master and one
worker. The master node runs both the KubeEdge system
management pods and the Geolocate scheduler. The worker
node will run all cloud-side workloads from the experiments.

Afterward, since there were no tools to automate the
KubeEdge initialization process and edge nodes addition to
the cluster, we developed our playbook for this task. The
playbook first installs the KubeEdge binaries at the master
node and starts the EdgeController process. Then four servers
are configured and added to the cluster as edge nodes. These
nodes will run all edge-side workloads for the experiments.

2) Latency across regions: Since our scheduler proposes
an efficient geographical distribution of data processing work-
loads according to the location of corresponding data produc-
ers, it is important to ensure that our cluster correctly simulates
a global distribution of nodes. As it was not possible to con-
veniently arrange and test our system with nodes effectively
distributed over wide geographic regions, we locally simulated
the latency between them as described in Table I.

City Austin Dublin Sydney Tokyo
Austin - - - -
Dublin 107 - - -
Sydney 191 274 - -
Tokyo 137 240 160 -

TABLE I: Global latency statistics in milliseconds extracted
from https://wondernetwork.com/pings.

To apply this latency to the cluster, we used Chaos Mesh,
a tool that features fault injection methods for complex sys-
tems on Kubernetes. Using the NetworkChaos Experiment,
we considered each of the cluster Edge nodes to be in a
city mentioned in Table I. We then configured a Network
Delay action between them and every other Edge node with

the desired latency, causing the expected delays in message
sending between pods deployed on those nodes.

C. Results

Now, we discuss the different conducted experiments and
analyze the corresponding results.

1) Scheduling overhead: As the first experiment, we mea-
sured the execution time of the node selection (scheduling)
algorithm for the default KubeEdge scheduler and for Geolo-
cate. In this experiment, each scheduler calculates and assigns
a data-processing workload to a node. We executed this test
20 times per scheduler. The average results show that both
schedulers have similar average execution time around 300µs.
However, Geolocate presents a higher standard deviation,
almost 174µs, than the default scheduler, 104µs.

2) Location-aware scheduling gains: To evaluate the use
of our new location-aware algorithm, we analyzed the per-
formance gains derived from placing data production and
processing workloads in close and far away regions. For every
test, we deployed a data-processing workload in the Cloud
server. Then, for each region, we deployed a data-producing
workload and measured the latency of exchanging messages.
Each experiment was repeated 5 times.

Figure 5, shows the variation of the average response time
(time to complete the processing task for a single message)
of our workload when correlated with different network com-
munication latencies between data producer and processing
(consumer) nodes. The points depicted at the figure refer to
the latencies at Table I, while the line extrapolates the response
time for other latency configurations.

When the latency between the data production and process-
ing systems is set to 50ms, the average processing response
time, for a single message, is around 400ms. When the
observed latency is 250ms, the average system response time
increases to 1000ms.

 0
 250
 500
 750

 1000
 1250

 0 50 100 150 200 250 300

R
e
sp

o
n
se

 T
im

e
 (

m
s)

Latency between producer and subscriber (ms)

Fig. 5: Latency impact on the underlying system

The latency between the two systems will always have
a multiplicative effect on the service’s response time. In
this case, we verify a proportional increase between the two
factors, with a correlation coefficient of 3. In other words, the
observed response time equals the message processing time
plus three times the latency between producer and subscriber.

A scheduling algorithm that does not addresses geographic
location will place, with the same probability, the producer’s
workload in any node of the cluster, which in average would

https://wondernetwork.com/pings

cause a latency of 157ms and a response time of 700ms.
A location-aware scheduler like Geolocate will constantly
try to place the workload in the node with lower latency,
therefore averaging 5ms, which corresponds to an average
service response time of 265ms. This difference represents a
62% gain in service response times.

It is clear the negative influence of high latencies between
the systems that produce and consume large amounts of data
for different services. Clients using services operating under
these conditions will observe high response times because of
the high latencies between data-producing and data-processing
systems.

3) Geolocate with continuous producer: In terms of place-
ment, let us now consider a cluster with a fixed producing
service (e.g., at the Cloud node) generating data messages at a
fixed rate (every 250ms) and placed in Dublin. The processing
workload fetches those messages and then processes them
for 250ms. It can be placed in any of the cities (e.g., at the
Edge nodes) described in Table I, which, in these experiments,
is achieved with different configurations of the Geolocate’s
scheduler. In these experiments, we assume that all regions
have one cluster node available for the processing task. If this
was not the case, the scheduler would choose the available
node with the lowest latency.

Figure 6 shows the incremental service response time in
processing queued messages according to the pair: (region
where data is produced, region where it is processed). For
example, in the case (Dublin, Austin), we see that the service
processed the 2500th message with a delay of about 8 minutes
since the production time. In the 5000th message, this delay
was around 16 minutes.

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 1000 2000 3000 4000 5000P
ro

ce
ss

in
g

 D
e
la

y
 (

se
co

n
d
s)

Number of Messages

(Dublin, Sydney)
(Dublin, Tokyo)
(Dublin, Austin)
(Dublin, Dublin)

Fig. 6: Service Response Times

Next, we will disregard all the other factors that may
condition the placement of workloads besides the geographical
location of the data, such as node priorities or balancing their
available resources. In these conditions, we know that the
default KubeEdge scheduler will place with equal probability
the workload on any of the available nodes.

In the best case scenario, with a probability of 25% in
this setup, the default KubeEdge scheduler will place the
processing workload in the Dublin node, the one with the

lowest latency to the data producing service, which keeps the
service response time constant at 253 milliseconds.

The worst case scenario also has a probability of 25%
in this setup. In this case, the default KubeEdge scheduler
would place the processing workload in Sydney. After 2000
messages, the service response time would be around 18
minutes. When considering 5000 messages, this time grows
to about 45 minutes.

Using the Geolocate scheduler, the data processing work-
load is always scheduled in the region defined by users. There-
fore, if there are enough available resources and the Dublin
location is specified by users, generating in all iterations the
pair (Dublin, Dublin) and having a constant response time of
253 milliseconds.

VI. CONCLUSION

This paper presents Geolocate, a new scheduling solu-
tion suitable for data-centric workloads being deployed at
geographically distributed Edge environments. The proposed
scheduler is integrated with KubeEdge, a state of the art or-
chestration system that is based on Kubernetes and maintains a
similar interface for portability and ease of adoption purposes.

The preliminary evaluation of our prototype shows that
Geolocate is able to maintain similar execution times to
the KubeEdge default scheduler when calculating scheduling
plans. Moreover, it achieves considerable gains in response
time due to a better placement of related data-producing and
data-processing applications.

The work presented at this paper opens the path to several
interesting research questions to be pursued.

1) Additional experiments: The paper shows preliminary
experiments with a simple proof-of-concept application. Thus,
a detailed evaluation contemplating real applications and dif-
ferent constraints on the number of available computational
resources per geographical location needs to be conducted.

2) Applicability: Since KubeEdge is an extension of Ku-
bernetes, the Geolocate’s scheduler can be directly applied
to other solutions following the same scheduling APIs as
Kubernetes. Such integration can be addressed as future work.

3) Automatic and adaptable scheduling: The decision on
the location where each workload should run can be improved
to be done in an automatic fashion and to be adaptable to
workload changes. For this, the scheduling mechanism must
be able to gather information about the data being exchanged
by applications deployed at Edge and Cloud nodes.

4) Scalability and fault-tolerance: Finally, as future work,
it is important to consider the scheduler’s scalability and
dependability for large-scale deployments.

ACKNOWLEDGEMENTS

Partially funded by project AIDA – Adaptive, Intelligent
and Distributed Assurance Platform (POCI-01-0247-FEDER-
045907) co-financed by the European Regional Development
Fund (ERDF) through the Operational Program for Compet-
itiveness and Internationalisation (COMPETE 2020) and by
the Portuguese Foundation for Science and Technology (FCT)
under CMU Portugal.

REFERENCES

[1] J. Xu, B. Palanisamy, H. Ludwig, and Q. Wang, “Zenith: Utility-aware
resource allocation for edge computing,” in 2017 IEEE International
Conference on Edge Computing (EDGE), 2017, pp. 47–54.

[2] A. Samanta and J. Tang, “Dyme: Dynamic microservice scheduling in
edge computing enabled iot,” IEEE Internet of Things Journal, vol. 7,
no. 7, pp. 6164–6174, 2020.

[3] “Kubernetes,” Jul 2021. [Online]. Available: https://kubernetes.io/
[4] B. Burns, B. Grant, D. Oppenheimer, E. Brewer, and J. Wilkes,

“Borg, omega, and kubernetes: Lessons learned from three container-
management systems over a decade,” Queue, vol. 14, no. 1, p. 70–93,
Jan. 2016. [Online]. Available: https://doi.org/10.1145/2898442.2898444

[5] Y. Xiong, Y. Sun, L. Xing, and Y. Huang, “Extend cloud to edge with
kubeedge,” in 2018 IEEE/ACM Symposium on Edge Computing (SEC),
2018, pp. 373–377.

[6] L. L. Jimenez and O. Schelen, “Hydra: Decentralized location-aware or-
chestration of containerized applications,” IEEE Transactions on Cloud
Computing, pp. 1–1, 2020.

[7] “Microk8s,” Jul 2021. [Online]. Available: https://microk8s.io
[8] “Akri,” Jul 2021. [Online]. Available: https://github.com/deislabs/akri
[9] “Kubernetes cluster federation (kubefed),” Jul 2021. [Online]. Available:

https://kubernetes.io/blog/2018/12/12/kubernetes-federation-evolution
[10] “Cloud native computing foundation,” Jul 2021. [Online]. Available:

https://www.cncf.io
[11] C. Chang, S. Yang, E. Yeh, P. Lin, and J. Jeng, “A kubernetes-

based monitoring platform for dynamic cloud resource provisioning,” in
GLOBECOM 2017 - 2017 IEEE Global Communications Conference,
2017, pp. 1–6.

[12] “Data analytics with apache beam,” Jul 2021. [On-
line]. Available: https://github.com/kubeedge/examples/blob/master/
apache-beam-analysis/README.md

https://kubernetes.io/
https://doi.org/10.1145/2898442.2898444
https://microk8s.io
https://github.com/deislabs/akri
https://kubernetes.io/blog/2018/12/12/kubernetes-federation-evolution
https://www.cncf.io
https://github.com/kubeedge/examples/blob/master/apache-beam-analysis/README.md
https://github.com/kubeedge/examples/blob/master/apache-beam-analysis/README.md

	Introduction
	Related Work
	KubeEdge
	Geolocate
	Design Principles
	Scheduler architecture
	Integration with KubeEdge
	Custom Resource
	Custom Controller
	Scheduler

	Preliminary Evaluation
	Workloads and collected metrics
	Experimental environment
	Cluster setup
	Latency across regions

	Results
	Scheduling overhead
	Location-aware scheduling gains
	Geolocate with continuous producer

	Conclusion
	Additional experiments
	Applicability
	Automatic and adaptable scheduling
	Scalability and fault-tolerance

	References

